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1. INTRODUCTION

Differential games [Isaacs 1967; Friedman 1971; Hajek 1975; Krasovskii and Subbotin
1988; |Petrosjan 1993; Bardi et al. 1999; Elliott and Kalton 1974; |[Evans and Sougani-
dis 1984; [Souganidis 1985] support adversarial interaction and game play during the
continuous dynamics of a differential equation in continuous time. They allow the two
players to control inputs to the differential equation during its continuous evolution
by measurable functions of continuous time. This is to be contrasted with hybrid sys-
tems [Henzinger 1996] and hybrid games, where differential equations are determin-
istic and the only decision is how long to evolve. Differential games are useful, e.g.,
for studying pursuit-evasion in aircraft if both players can react continuously to each
other. They are a good match for tight-loop, analog, or rapid adversarial interaction.
Hybrid games [Nerode et al. 1996; Henzinger et al. 1999; Tomlin et al. 2000; |Dhar-
matti and Ramaswamy 2006; Bouyer et al. 2010; Vladimerou et al. 2011; Platzer 2015|
are games of two players on a hybrid system’s discrete and continuous dynamics where
the players have control over discrete-time choices during the evolution of the system,
but the continuous dynamics stays deterministic and its duration is the only choice in
the game. Hybrid games can model discrete aspects like decision delays, discontinu-
ous state change, or games with different controls and different dynamics in different
modes of the system. They are a good match for sporadic or discrete-time adversarial
interaction with discrete sensors or reaction delays for structurally complex systems.
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19:2 A. Platzer

The primary purpose of this article is to show that both game principles are not in
conflict but can be integrated seamlessly to complement each other. This article in-
troduces differential hybrid games that combine the aspects of differential games with
those of hybrid games resulting in a model where discrete, continuous, and adversarial
dynamics mix freely. This makes it possible to model games that combine continuous-
time interactions (e.g. auto-evasion curves for aircraft) with discrete-time interactions
(e.g. whether to ask an intruder pilot to synchronize on collision avoidance or whether
to follow a nonstandard manual flight maneuver). Differential hybrid games also pos-
sess the advantages of hybrid systems, so that structurally more complex cases with
different parts and different subsystems with different dynamics can be modeled.

The key insight behind hybrid systems is that it helps to understand each aspect
of a system separately on its natural level [Platzer 2012b]]. Discrete dynamics are a
good fit for some aspects. Continuous dynamics are more natural for others. Differ-
ential hybrid games enable the same flexibility for games rather than for systems, so
that each adversarial aspect in a cyber-physical system can be understood on its most
natural level. Which level that is depends on modeling/analysis tradeoffs. Differential
hybrid games provide a unifying framework in which both game aspects coexist and
combine freely to enable such tradeoffs. Their differential games are needed to de-
scribe quick continuous-time control interaction, while only their hybrid game aspects
provide discrete-time adversarial choices, discontinuous state change, and subsystem
structuring mechanisms. This article studies, e.g., airships with continuous adversar-
ial change of local turbulence and sporadic discrete adversarial change of wind fields
with static obstacles. The system changes radically whenever the wind field or the rel-
evant static obstacles change, which only happens sporadically, because airships do
not move into entirely new wind conditions or near the next mountain so often. Local
turbulence changes quickly, however, and needs appropriate reactions all the time.

This article introduces a generalization of differential game logic dGL [Platzer 2015]
to differential hybrid games, extending differential game logic for ordinary hybrid
games [Platzer 2015]] by adding differential games. Since this extension yields a compo-
sitional logic and a compositional proof technique, the primary attention in this article
is on how differential games combine seamlessly with hybrid games and how prop-
erties of differential games can be proved soundly. Proof techniques for the resulting
differential hybrid games then follow from logical compositionality principles.

In addition to presenting the first logic and modeling language for differential hybrid
games, this article presents inductive proof rules for differential games to obtain the
first sound and compositional proof calculus for differential hybrid games. Differen-
tial game invariants and their companions (differential game variants and differential
game refinements) give a logical approach for differential games, complementing geo-
metric viability theory and other approaches based on numerical integration of partial
differential equations (PDEs). The advantage is that differential game (in)variants
provide simple and sound witnesses for the existence of winning strategies for differ-
ential games, even in unbounded time, and without having to build a formally verified
numerical solver for PDEs with formally verified error bounds to obtain sound formal
verification results, which would be quite a formidable challenge.

Soundness is a substantial matter in differential games due to their surprising sub-
tleties. It took several decades to correctly relate Isaacs’ PDEs to the differential games
they were intended for [Isaacs 1967; Bardi et al. 1999]]. After a long period of gradual
progress, differential games are now handled by numerically solving the PDEs they
induce or by corresponding geometric equivalents from viability theory formulations
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for such PDEs [Cardaliaguet et al. 2007]. Soundness issues with a number of such
approaches for differential games were reported [Mitchell et al. 2005]E]

This raises the challenge how to prove properties of differential games with the
correctness demands of a proof system. This article advocates for dedicated proof rules
for differential games alongside proof rules for hybrid games. Logic is good at then
combining those sound proof rules soundly with each other in a modular way.

The article concludes with a theoretical insight. Hybrid systems have been shown
to be equivalently reducible proof-theoretically to differential equations [Platzer 2008]
and even to equivalently reduce to discrete systems [Platzer 2012al. This trend re-
verses for hybrid games, which do not reduce to differential games, but subsume them.

Contributions. The primary contributions are a compositional programming lan-
guage for differential hybrid games that combine discrete, continuous, and adversarial
dynamics freely, along with a proof calculus and expressibility results. The most impor-
tant novel feature of the proof calculus are sound induction principles for differential
games. The most interesting technical contribution is their soundness proof. Superdif-
ferentials for a conceptual simplification are another interesting aspect of this article.

While the results are elegant and all background for the proofs is given, these proofs
draw from many areas, including logic, proof theory, Carathéodory solutions, viscosity
solutions of partial differential equations, real algebraic geometry, and real analysis.
Byproducts of the soundness proof yield results of independent interest. All new proofs,
which are the ones for results without citations, are included inline.

2. PRELIMINARIES

This section briefly recalls basic notions that will be used throughout this article. The
article mostly considers Euclidean vector spaces with the Euclidean scalar product of

vectors v, w denoted by v-w. The Euclidean norm of a vector v is denoted by |v| def NZEDH

A set Z is compact (called quasi-compact by Bourbaki) iff every open cover has a
finite subcover. In metric spaces such as R*, a set Z is compact iff it is sequentially
compact, i.e. every sequence in Z has a convergent subsequence with limit in Z. In
Euclidean spaces, a set is compact iff it is closed and bounded (Heine-Borel theorem).

Remark 2.1 (Preimage). The preimage f~'(A)={z € X : f(z)€A} of aset A C Y
under function f : X — Y satisfies the usual properties:

(1) A C Bimplies f~1(A) C f~1(B)

(2) f~1(A%) = (f~1(A))C for the complement A° of A

3) f7H(Ner Ai) = Nier /1 (Ay) for any index family T

(4) (fog) "(A) =g (f1(A))) where f o g is the composition mapping z to f(g(z))

A function f : X — Y between measurable spaces is measurable iff the preimage of
every measurable subset in Y is measurable in X. By Case[d] the composition f o g is
M-measurable if f is Borel measurable and g is M-measurable. It is important for this
composition that f is Borel measurable, otherwise the measure space changes.

A function f : X — R”* on a normed vector space X is A\-Holder continuous iff there
is an L € R such that |f(z) — f(y)| < L|z — y|* for all x,y. Hence, f is 0-Holder con-
tinuous iff it is bounded. Functions that are 1-Hoélder continuous are called Lipschitz-
continuous. A function f : X x Y — R” is uniformly Lipschitz in z iff thereisan L € R
such that |f(z,y) — f(a,y)| < L|x —a| for all z,a € X,y € Y. A function f : X — R* is

1The results presented here are of independent interest, because they provide a fix for an incorrect cyclic
quantifier dependency in the correctness proof in said paper [Mitchell et al. 2005] that was confirmed by the
authors.
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uniformly continuous iff, for all ¢ > 0, there is a ¢ > 0 such that |f(z) — f(y)| < € for all
|z —y| < 0. A function f : I — R* on an interval I C R is absolutely continuous iff, for all
e > 0,thereisad > 0such that )| f(z;) — f(y:)| < € for all finite sequences of pairwise
disjoint sub-intervals (z;,y;) C I with )" |z; —y;| < d. If f is continuously differentiable
on a compact set, then f is differentiable with bounded derivatives, in which case f is
Lipschitz-continuous, which implies f is absolutely continuous, implying that f is uni-
formly continuous, in which case f is continuous, making f Borel measurable [Walter
1995]]. Continuous functions on compact sets are bounded and uniformly continuous.
A semialgebraic function is a function between semialgebraic sets (i.e. definable by fi-
nite unions and intersections of polynomial equations and inequalities) whose graph
is semialgebraic.

A sequence of functions f, : X — R* converges uniformly to f : X — R* for n — oo
iff f,, converges to f in supremum norm || f,, — f|lcc — 0 for n — oo, which is equivalent
to: for all £ > 0 there is an n( such that |f,,(z) — f(z)| < e foralln > ny and all z € X.

3. DIFFERENTIAL GAME LOGIC

This section introduces the differential game logic dGL of differential hybrid games,
which adds differential games to differential game logic of (non-differential) hybrid
games from previous work [Platzer 2015]. The difference between hybrid games and
differential hybrid games is that only the latter allow differential games with player
input, while the former allow only differential equations instead. The respective dif-
ferential game logics are built in the same way around the respective game models.
Differential hybrid games are games of two players, called Angel and Demon. Differ-
ential game logic uses modalities, where [«]¢ refers to the existence of winning strate-
gies for Demon for the objective specified by formula ¢ in differential hybrid game «
and («)¢ refers to the existence of winning strategies for Angel for objective ¢ in dif-
ferential hybrid game «. So [a]¢ and («)—¢ refer to complementary winning conditions
(¢ for Demon —¢ for Angel) in the same differential hybrid game «. Indeed, the two
formulas [o]¢ and (a)—¢ cannot both be true in the same state (Theorem3.8).

3.1. Syntax

The terms 6 of dGL are polynomial terms (more general ones are possible but not neces-
sarily decidable). In applications, it is convenient to use min, max terms as well, which
are definable as semialgebraic functions [Tarski 1951]]. Differential game logic formu-
las and differential hybrid games are defined by simultaneous induction. Similar si-
multaneous inductions are used throughout the definitions and proofs for dG..

Definition 3.1 (Differential hybrid games). The differential hybrid games of differ-
ential game logic dGL are defined by the following grammarﬂ (o, B are differential hy-
brid games, x is a variable, 6 a term, ¢ a dGL formula, y € Y and 2z € Z are formulas in
free variables y or z, respectively, and f(z,y, z) is a term in the free variables z, y, 2):

B =2 = fle,y,2)8yeY&zeZ|z:=0 |2 |aUB|a;f|a*|al

Definition 3.2 (dGL formulas). The formulas of differential game logic dGL are de-
fined by the following grammar (¢, ¢ are dGL formulas, 6; are (polynomial) terms, z is
a variable, and « is a differential hybrid game):

¢p n= 012020 | oAV | T ()| [ald

2The ¢ in differential game =’ = f(x,y, 2)&y € Y&z € Z is a mnemonic reminder that Demon controls dual
input y and Angel controls z. The order of notation further reminds that, at any point in time, Demon chooses
an action y € Y before Angel chooses a z € Z at that time (in a sense made precise in Sect,.
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Other operators >, =, <, <, V, —, >, Vx can be defined as usual, e.g., Vx ¢ = -3z ~¢. The
modal formula («)¢ expresses that Angel has a winning strategyﬂ to achieve ¢ in dif-
ferential hybrid game «, i.e. Angel has a strategy to reach any of the states satisfying
dGC formula ¢ when playing differential hybrid game «, no matter what Demon does.
The modal formula [o]¢ expresses that Demon has a winning strategy to achieve ¢ in
differential hybrid game «, i.e. a strategy to reach any of the states satisfying ¢, no
matter what Angel does.

As usual, z:=0 is an assignment and ?vy the test game or challenge that Angel only
passes if formula ¢ holds true in the current state. Otherwise she loses immediately,
because she failed a test. Further, o U 5 is a game of choice where Angel gets to choose
to play « or to play 8 whenever o U 8 is played. The sequential game «;f plays «
followed by S (unless a player lost a challenge during «). The repeated game o* plays
« repeatedly and permits Angel to decide after each play of @ whether she wants to
play another iteration (unless a player lost a challenge). The dual game o is the same
as game o except that all choices that Angel has in « are resolved by Demon in o
and all choices that Demon has in a are resolved by Angel in o, similar to the effect
of flipping a chessboard around by 180° so that both players change sides. During a
differential hybrid game, players can lose prematurely by violating the rules of the
game, expressed in the tests. The winning condition is specified in the postcondition ¢.

The important addition compared to prior work [Platzer 2015] is the inclusion of dif-
ferential games in the syntax for hybrid games. Predicate symbols have been removed,
because they are of no immediate concern for the core focus here: adding differen-
tial games to hybrid games. All occurrences of y, z in 2’ = f(z,y, 2)8y € Y&z € Z are
bound. Finally, z, y, z can be vectorial if f(z,y, z) is a vectorial term of the same dimen-
sion as x. During a differential game =’ = f(z,y, 2)&y € Y&z € Z, the state follows the
differential equation z’ = f(z,y, z), yet Demon provides a measurable input for y satis-
fying y € Y always, and Angel, knowing Demon’s current input, provides a measurable
input for 2 satisfying z € Z, while Angel controls the duration (Sect.[3.3).

Observe the use of suggestive notation that is adopted in the interest of traceability
with mathematical practice throughout this article: VyeY ¢ stands for Vy (y € Y — ¢)
and JyeY ¢ for Jy (y € Y A ¢), in which y € Y is understood as convenient notation for
a logical formula of one free variable (vector) y.

A nondeterministic assignment c := x assigns any real value to = by Angel’s choice,
S0 [c:=%]¢p = Ve and (c:=x)¢ = Jc¢. Nondeterministic assignments are definable,
e.g., as the differential game ¢’ = 2&2 € B, where 2 € B is —1<2<1, or with differential
equations as ¢/ = 1;¢ = —1 since durations are unobservable without extra clocks.

Example 3.3 (Zeppelin). Coping with the intricacies of wind is an omnipresent
challenge for aircraft, and particularly pronounced for airships where the wind may
sometimes be stronger than their own propulsion. It is not their propulsion that keeps
airships in the air, but they are big and lighter than air to generate buoyancy. At a
fixed height, consider a Zeppelin-class airship with position = € R? that can fly in all
directions by turning its propeller into that direction. The propeller itself can gener-
ate up to a velocity p. The Zeppelin is floating in the sky within a homogeneous wind
velocity field v € R?, but is also subject to local turbulence changing quickly in unpre-
dictable directions of magnitude <r. The Zeppelin is trying to prevent a collision with
an obstacle of radius <c at position o € R?. In order to fly safely, the Zeppelin needs to
find a way of controlling its propeller so that it remains collision-free despite the turbu-
lence. Sporadically at discrete time points, the homogeneous wind field v may change
or another obstacle o possibly with a different radius ¢ may appear in the Zeppelin’s

3The names are arbitrary but the mnemonic is that, just like the diamond operator (-), Angel has wings.
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4
Fig. 1. Challenging Zeppelin obstacle parcours with wind fields and one possible response trajectory

horizon. To simplify the matter, the obstacles are assumed to be reasonably separated
so that the Zeppelin ever only has to worry about one obstacle at a time (unlike Fig.[T).
If the turbulence is stronger than the propeller (r > p), the Zeppelin is unmaneuver-
able and hopelessly at the mercy of the waves in the air. If the propeller is stronger
than the wind field and the turbulence combined (p > |v| 4+ r), the Zeppelin is es-
sentially able to overcome all wind by sheer force. In between these two extremes,
however, when r < p < |v| + r, the Zeppelin has the particularly interesting challenge
of having to maneuver in a clever way to ensure the combined wind field and possible
local turbulences cannot lead to a collision that its propeller can no longer prevent.
The following dGL formula expresses that there is a winning strategy to fly the Zep-
pelin safely around the obstacle (|z—o0|? > ¢?) if it was initially safe and each obstacle is
recognized at sufficient distance according to a condition C that is yet to be identified:

c>0N|z -0 > —

[(vi=x0:=x%ci=%7C, "
o =v+py+rz8y € B&z e B

)T le — o> > &

To give the Zeppelin a chance, assume some choices of p and r for which p > » > 0
so that the propeller is not weaker than the turbulence. For example p = 3/4,r = 1/2
as in Fig.[T, which are weaker than all its wind fields, though. Using vectorial nota-
tion, let y € B be y? + y2 < 1 and similarly let z € B be 2 + 22 < 1 to describe the
unit disc, among which direction vectors are chosen by the two players during the dif-
ferential game (line 3). Unit vectors correspond to full speed ahead, while vectors of
smaller norm will lead to less power. According to the semantics of differential games
(Sect.[3-3), the propeller y € B will have to act before it knows about the local turbu-
lence z € B, because it is hard to predict the chaotic changes of turbulence.

In addition to this rapid interaction, where the propeller tries to overcome the local
turbulence to prevent collisions, the differential hybrid game in includes a repe-
tition (operator * in line 4), also under the opponent’s control, that allows Angel to
repeat lines 2-4 any number of times. During each repetition, the differential hybrid
game in allows arbitrary wind field changes (by a nondeterministic assignment
v:= %), and allows the next relevant obstacle o to appear arbitrarily with a new radius
c. After those arbitrary changes, Angel needs to pass the subsequent test 7C, though,
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so that she can only update v, o, ¢ according to the formula C, which will be identified in
Sect.[d]to prevent impossibly late notice of obstacles. Demon’s opponent in dGL formula
(1) can, thus, sporadically switch to a new obstacle and possibly also a new wind field
as long as there is enough space in between to satisfy C. Demon’s job in the differential
game is to use the propeller to avoid the current obstacle despite the additional turbu-
lence under Angel’s control. If the obstacles are too close together and the wind fields
change too radically, the Zeppelin navigation problem is exceedingly tricky (Fig.[I).

3.2. Differential Games

The semantics of differential game constructs in differential hybrid games is based on
nonanticipative strategies for differential games [Elliott and Kalton 1974; Evans and
Souganidis 1984; Bardi et al. 1999].

Definition 3.4 (Differential game). Let Y C R* Z C R! be compact sets of controls
for the respective players. Let function f : [,7] x R x Y x Z — R" be bounded,
uniformly continuous, and in z uniformly Lipschitz. For time horizon T, initial time
1 < T (usually n = 0) and initial state £ € R", a differential game has the form

x2'(s) = f(s,x(s),y(s),2(s)) n<s<T
{ﬂm=£ )

where the controls y : [n,T] — Y and z : [,T] — Z are measurable functions for the
respective players for Y and for Z. The set of (measurable) controls are denoted My
and Mz, respectively. The terminal payoff, i.e. payoff at time horizon T, is defined by
a bounded and Lipschitz function g : R™ — R.

A Carathéodory solution of a differential equation is an absolutely continuous func-
tion satisfying the differential equation a.e. (almost everywhere, which means except
on a subset of a set of measure 0). By a classical result, the behavior of a differential
game is uniquely determined for each pair of controls:

LEMMA 3.5 (RESPONSE). For each controls y € My ,z € Mz and initial data 7, ¢,
the differential equation has a unique Carathédory solution x : [n,T] — R", called

response and denoted by x(s;€,y, z) def z(s) as a function of time s with parameters
&y, z. Finally, ©(s;€,y,2) = x(s;€,4,2) forall sify =g a.e.and z = % a.e.

PROOF. f(s,x,y(s),2(s)) is continuous in z, because f is (even uniformly) contin-
uous, and measurable in s, because it is a composition of a continuous so Borel-
measurable function f with measurable functions y and z (Sect.[2). Let I(s) denote
the maximum of the bound of f and its Lipschitz constant L. Then [/ is measurable
and integrable on [, T] (it is constant) and satisfies |f(s,0,y(s), z(s)| < I(s) and the
(generalized) Lipschitz condition for all s, z, a:

[f(s,2,y(s),2(5)) — f(s,a,y(s), 2(5))| < U(s)]x —al

Thus, Carathéodory’s existence and uniqueness theorem [Walter 2000, §10.XX] shows
the existence of a unique solution that can be continued to the boundary of the domain,
hence is global since f is bounded. Finally, the fundamental theorem of calculus for
Lebesgue-integrals [Walter 1995, Thm. 9.23] implies that changing y and 2 on a set of
measure zero does not change the response z(s;¢,y,2). O

Of course, the players do not know their opponent’s control. Yet, for each possible con-
trol pair y € My and z € M, the response of the differential game is unique by
Lemma|3.5] even if it is still hard to predict computationally.
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The (termina]ﬁ) payoff for controls y € My and z € Mz of (2) at the terminal time
T is the value of g at the final state at time T, i.e.:

9(x(T)) = g(z(T;€,y,2)) 3)

If both players were to commit to a control before the differential game starts, then
they play y € My and z € My as open-loop strategies and, by Lemmal3.5 the only
question would be what information they have before choosing their respective con-
trols, e.g., in which order they choose y € My and z € M.

As soon as the players get to observe the state of the system and react to it, though,
the situation gets more interesting but also more difficult, because the state at a time s
depends on the controls that both players chose until time s, so their reactions depend
on previous actions by both players. That still leaves the question what information
the players have when they choose their respective actions. A nonanticipative strategy
(for Z) is a function that maps the opponent’s control functions to the player’s control
functions. The strategy gets the opponent’s full control signal y € My as input, but, for
fairness reasons, its resulting control value in Z at any time s is only allowed to depend
on the values that y had until time s (no dependency on the future). A nonanticipative
strategy for Z does, however, give the player for Z the slight edge of having access also
to the opponent’s action at the present time s. A nonanticipative strategy produces
equivalent controls at time s for two controls that agree up to time s. Equality almost
everywhere implies that the game response is unchanged (Lemma(3.5), so that the
appropriate notion of equivalent controls is equality a.e.

Let Sy _,z be the set of (causal or) nonanticipative strategies for Z, i.e. the set of
functions § : My — Mz such that for all times n < s < T and all controls y,§ € My:

if y = ¢ a.e. on [n, 5]
then 8(y) = 3(§) a.e. on [, s] (i.e. B(y)(r) = B(Y)(7) for a.e. n < 7 < 3)

That is, nonanticipative strategies for Z give the player for Z the current state, history
(which is irrelevant because the games are Markovian), and the opponent’s current
action. The reaction 3(y) of a nonanticipative strategy to y cannot, however, depend
on the opponent’s future input beyond the current time. Unlike ill-defined approaches
with state-feedback strategies etc., time-dependent controls ensure that the response
exists and is unique [Hajek 1975, §2.2]. Dually, the set of nonanticipative strategies for
Y is Sz ,y,i.e.thesetof a: Mz — My suchthatforalln <s<Tandall z,2 € My:

if z = %2 a.e. on [, s] then a(z) = a(%) a.e. on [n, 5]

3.3. Semantics

The semantics for differential game logic with differential hybrid games embeds the
semantics of differential games within differential hybrid games while simultaneously
extending the meaning of hybrid games seamlessly to differential hybrid games by
adding differential game winning regions. The modular design of dG£Z makes this in-
tegration of differential games with hybrid games simple by exploiting their composi-
tional semantics. Since hybrid games have been described before [Platzer 2015], the
primary focus will be on elaborating the new case of differential games.

A state £ is a mapping from variables to R. Let S be the set of states, which, for n
variables, is isomorphic to Euclidean space R". For a subset X C S the complement
S\ X is denoted X C. Let ¢ denote the state that agrees with state £ except for the

4Differential games with a running payoff h can be converted to terminal payoff §(x,r) = g(x) + r when
adding a differential equation 7/(s) = h(s,z(s),y(s), 2(s)) that accumulates the running payoff h(s, z,y, z).
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interpretation of variable xz, which is changed to x € R. The value of term 6 in state &
is denoted by [¢], and defined as in first-order real arithmetic. As dGL formulas are
defined by simultaneous induction with differential hybrid games, the denotational
semantics of dGL formulas will be defined (Def.[3.6) by simultaneous induction along
with the denotational semantics, ,(-) and d,(-), of differential hybrid games (Def.[3.7).
Unlike the dGL quantifiers Ex ,Vzin the logical language of dGZ, the short notation
for quantifiers in the mathematical metalanguage is 3 (for some &) and £ (for all &).

Definition 3.6 (dGL semantics). The semantics of a dGL formula ¢ is the subset
[¢] C S of states in which ¢ is true. It is defined inductively as follows:

(1) [01 > 0] = {5 € S:[01]; = [02],}
(2) ﬁ¢]] ({ S\[[ |
IRE ot

I N [[:;JL
€S eRE efo]} ={£ € S: &k € [¢] for some « € R}
@ Hatet = actiet)

Formula ¢ is valid, written F ¢, iff [¢] = S, i.e. ¢ is true in all states &.

Definition 3.7 (Semantics of differential hybrid games). The semantics of a differ-
ential hybrid game « is a function ¢,(-), that, for each set of Angel’s winning states
X C S, gives the winning region of Angel, i.e. the set of states ¢,(X) from which Angel
has a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows:

(1) ¢ f(z,y, z)&SyGY&ZGZ(X) =
{5 €S M>018 € Sy % € My (T 2(C5€,9,8(y)) € X}

l—e)g —{568 @EﬂgeX}

(3) o
20:658( :gga U §5(X)
@ AP EY x bz c

(7 caa(X ) (<a(XT5))G

The winning region of Demon is a function d,(-), which, for each of Demon’s winning
states X C S gives the set of states J,(-) from which Demon has a winning strategy to
achieve X (whatever strategy Angel chooses). It is defined inductively as:

(D 5x/—f(a:,y z)&ger&zEZ(X =
{¢eS: W>ow € Syr Fy € My W<(<T (€, 8(y) € X}
3

(ggggc:e( —{§€S @ eX}

o a:sﬁ ,% ﬂg” gX msﬂ

(5) 6045

(6) 5a* = ZCXmS( )}
(7) 64 ( ) (

The composmonal semantics of differential hybrid games agrees with that of hybrid
games [Platzer 2015] except for the addition of differential games. Time horizon T,
nonanticipative strategy S for Z, and stopping times ¢ of differential games are Angel’s
choice while control of y is Demon’s choice. Angel first chooses a finite time horizon T
and nonanticipative strategy /3, but the corresponding control 3(y) from her nonantic-
ipative strategy ( gives her a chance to observe Demon’s current action from Demon’s
control y. Angel ultimately gets to inspect the resulting state and decide at what time
¢ she wants to stop playing the differential game. This is the continuous counterpart of
a*, where Angel gets to inspect the state and decide whether she wants to repeat the
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loop again or not, which follows from the fixpoint semantics of o*; see [Platzer 2015].
The fact that Angel has to choose some arbitrarily large but finite time horizon T first
corresponds to her not being allowed to play the differential game indefinitely, just
like she is not allowed to repeat playing o* forever, which again results from its least
fixpoint semantics [Platzer 2015]. Demon has a winning strategy in the differential
game 2’ = f(z,y,2)&y € Y&z € Z to achieve X if for all of Angel’s time horizons 7" and
all of Angel’s nonanticipative strategies 3 for Z there is a control y € My for Demon
such that, for all of Angel’s stopping times (, the game ends in one of Demon’s winning
states (i.e. in X). Demon knows 3 € Sy_,z when choosing y € My, so he can predict
the states over time by solving (2) from Def.[3.4] via Lemma[3.5] Angel can predict the
states over time by Lemmal(3.5|as well, since her strategy 5 € Sy_, 7 receives Demon’s
control y € My as an input. But Angel’s nonanticipative 5 allows G(y)(s) to depend on
y(s), which gives her the information advantage for the current action.

The (dual) quantifier order for (-) is the same, so that Angel finds some 3 € Sy_,
that works for any y € My since she cannot predict what Demon will play. Hence, the
informational advantage of the opponent’s current action as well as the advantage of
controlling time in a differential game consistently goes to Angel, whether asking for
Angel’s winning strategy in (-) or for Demon’s winning strategy in [-]. The same game is
played in [z = f(z,y,2)&y € Y&z € Z] and in (2 = f(x,y, 2)&8y € Y&z € Z) with the
same order of information as indicated by the notation of differential games, just from
the perspective of winning strategies for different players.

The last quantifier ¢ might appear to be unimportant, because, if Angel wins, then
from any state there is a maximum time horizon 7' within which she wins so that it
seems like it would be enough for her to choose that maximum time horizon 7" and
check for the terminal state at time 7. However, Demon might then still let Angel
“win” earlier by playing suboptimally if that gives him the possibility of moving outside
Angel’s winning condition X again before the winning condition is checked at time 7.
It is, thus, important for Angel to be able to stop the differential game at any time
based on the state she observes. She will want to stop when the game reached her
target. Consider, e.g., the race car game, where Demon is in control of a car toward a
goal 22 < 1 and Angel is in control of time but has no other control input z:

r=-9Nt=0— [/ =yt =18y € [1,2](4<t<8 — 2°<1)

If Angel were to declare that she will choose ( = T upfront by advance notice, then
Demon could compute an optimal velocity y = & = % € [1,2] and will win at time ( = T,

since Angel has to choose 4 < { < 8 to stand a chance to win. Since Angel, however,
only declares a time bound 7" and chooses the actual stopping time ¢ only after Demon
revealed y € My, she can choose T" = 7 and already end the game at ( = 4.1 to win if
Demon has not moved z to 22 < 1 at time 4.1 yet. If Demon has moved = to 22 < 1, so
x > —1, then Angel still wins by waiting the full time ¢ = T, which is at least 2 more
seconds, during which Demon must have moved by at least 2 along 2’ = y and left
22 < 1 to lose. This example hinges on a postcondition that is neither open nor closed.
Since differential hybrid games have the same information structure for () and [a],
just referring to another player’s winning strategy, the determinacy theorem [Platzer
2015, Thm. 3.1] extends to differential hybrid games. In each state, exactly one player
has a winning strategy, i.e. either Angel has a winning strategy to achieve —¢ or Demon
has a winning strategy to achieve ¢. The proof is much easier than (partial) determi-
nacy results for other scenarios and other information patterns of differential games
[[Cardaliaguet 1996], and gains simplicity compared to Borel determinacy, just like the
determinacy theorem for hybrid games that it is based on [Platzer 2015, Thm. 3.1].
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THEOREM 3.8 (DETERMINACY). Differential hybrid games are determined, i.e.
F = (a)=¢ < [a]o.

PROOF. The proof shows by induction on the structure of « that ga (X = §,(X) for
all X C S, which implies the validity of —(a)—¢ < [@]¢ using x % [[(;5]] by Def.|3.6l The

only difference to a corresponding determinacy proof for hybrid games [Platzer 2015]]
is the additional Case[l]for differential games, which follows directly from Def.[3.7}

(@) §x’:f(x,y,z)&5fy€Y&z€Z(XC)G

= {6 €S>0 € Sy_z Wy € My DCT 2((5€,, 8(y))) € XB)E
={{e€S: not I>0343 € Sy_.z W € My 0<C<T =(¢:€,9.8(y))) € X}
={€e€S:VI>0¥8 € Sy z Hy € My W<C<T =(¢;€,y,6(y) € X}

= 5:,:/:f(z,y,z)&zler&zeZ(X)
@) cop(XOE = {ce8: e 2 X8 = _,(X) = 6,00(X)
(3) <2y (XO)E = ([w] N XC)8 = ([])° U (XC)E = Gy (X)
@) saus(X8)C = (ca(X®) Ugs(XC)C = ¢ (X8 N s (XC)E = 6.(X) N ds(X) = daus(X)
(5) aip(XC)E = o ((XC))C = ca(95(X)E)C = 00 (65(X)) = baya(X)

(6) cu- (XT)E = (n{z cS:xbuc.(2)C Z})G = (m{z CS:(XNe(2)8)0C Z})B

= (m{z CS: (XN (280 C Z})E ={ZCS:ZCXNb.(2)} = 6a*(X).
(1) 600 (X5)F = (((X8)0)0)F = 6,(XO)F =6,0(X) D

A formula is called atomically open if its negation normal form is built from A,V,>,<.
Atomically open formulas define topologically open sets. The converse is not true, be-
cause there can be spurious extra subformulas: 0 < x A x < 5V z = 2 is topologically
open but has an irrelevant topologically closed subformula x = 2. A formula is atom-
ically closed if its negation normal form is built from A,V, >, <,=. Atomically closed
formulas define topologically closed sets. Both converses can always be made true by
transforming formulas to avoid superfluous subformulas [Bochnak et al. 1998| 2.7.2].
The primary focus in this article is on postconditions that are open or closed.

LEMMA 3.9 (R ARITHMETIZATION). There is an effective mapping ()ER from first-
order formulas to (continuous) terms of mixed polynomials, min, and max. If F' is atom-
ically open, then = F < (F® > 0). If F is atomically closed, then £ F «+ (F* > 0).

PROOF. By quantifier elimination [Tarski 1951], F' can be assumed to be quantifier-
free and in negation normal form. The term F”* of mixed polynomials, min, max for F'
is defined inductively, which obeys the desired properties:

(azb)%z(a>b)%za—b
(@a<b)®=0>a)r

(a < b)ER =(0b> a)ER
(a=0b)" = (a>b/\b>a)3ce
(FAG)® = min(F®,G?)
(FVG)" =max(F?,G") 0O

5The penultimate equation follows from the p-calculus equivalence vZ.Y(Z) = ~uZ.—Y(~Z) and the fact
that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone functions.
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Even if not all are necessary, the assumptions in Def.[3.4] will be required to hold
when playing differential games from Def.[3.1] They can be checked using the relations
in Sect.2] which are decidable for the relevant terms in first-order real arithmetic
[Tarski 1951]]. The easiest criterion, however, is the following:

LEMMA 3.10 (WELL-DEFINEDNESS). If f is bounded for compact [y € Y],[z € Z]

and F is open or closed, then all differential games for [z’ = f(x,y, 2)8y € Y&z € Z|F
and (z' = f(x,y,2)8y € Y&z € Z)F are well-defined.

PROOF. Let b a bound on the norm of f. For any initial state £ at n = 0 and any
time horizon 7' (Def.[3.7) any response z((;€,y,(y)) of (2) remains on the compact
ball of radius b7 around £. Without changing the differential game, f can, thus, be re-
placed by an f that agrees with f on this compact ball and accordingly for the payoff.
On that compact set, the dG£ term f and the arithmetization F'® define Lipschitz-
continuous functions (even when using min, max terms) as follows. Polynomials are
smooth and, thus, Lipschitz on compact sets. The absolute value function is Lips-
chitz. The composition min(z,y) = (z +y)/2 — |« — y|/2 of Lipschitz functions is Lip-
schit#’] and so is max(z,y) = — min(—x, —y). By Tietze [Walter 1995, 2.19], there are
Lipschitz-continuous extensions f of f and § of F® that agree on the compact ball and

remain bounded. The differential game 2/ = f(z,y,2)&y € Y&z € Z with payoff § is,
thus, equivalent by Lemmas [3.5) and [3.9| and it meets the requirements of Def.3.4] O

For any horizon 7" and initial state £ as used in Def.[3.7] the right-hand side f of a dif-
ferential game can be replaced in similar ways by a bounded function without changing
the game [Griine and Serea 2011, since f is continuous by Def.[3.1] Unlike semantic
differential games (Def.[3.4), the differential games in the logic dGL (Def.[3.1) have no
time-dependency but need an explicit extra clock variable ¢ with differential equation
t’ = 1 to express time-dependencies. Retaining an explicit time-dependency for seman-
tic differential games (Def.[3.4) is helpful for the soundness proofs, however.

4. DIFFERENTIAL GAME PROOFS

This section introduces sound induction principles for differential games with differ-
ential game invariants and differential game variants as well as ways of comparing
differential games by differential game refinements.

Differential equations are already hard to solve and it is challenging or impossible
to use their solutions for proofs [Platzer 2012a]. It is even more difficult, however, to
solve differential games, because their Carathéodory solutions depend on the control
choices adopted by the two players, which can be arbitrary measurable functions and
are mutually dependent. A direct representation of this would, thus, require not just
alternating quantification over arbitrary measurable functions, but also the ability
to solve all resulting Carathéodory-type ordinary differential equations and to prove
properties about all their respective behaviors — a truly daunting enterprise.

Differential game invariants, instead, define a simple induction principle for differ-
ential games. The proof rule of differential game invariants and its counterpart for
differential game variants are shown in Fig.[2] Differential game invariants (rule DGI)
have a simple intuition. checks if, in each z (Vz is implicit in the premise of
and follows from the definition of validity in Def.[3.6), there is a local choice of control
action y for Demon such that, for all choices of Angel’s control action z, the derivative

F’ i,(w’y’z) of F holds when substituting the right-hand side f(z,y,z2) of the differen-

51f(g(x)) — f(g(w)| < Llg(z) — g(y)| £ LK|x — y| makes the composition f o g LK-Lipschitz when f is
L-Lipschitz and g is K-Lipschitz, respectively.
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JyeYVze ZFlil(x,y,z)

(DGD F =2 = f(z,y,2)8y € Y&z € Z|F
Dgyy >0V IEZWEY (90— g Imv?) > g
(' = f(x,y,2)8y € Y&z € Z)g >0
(DGR) YVueUTIyeYVzeZIweVVe(flx,y,z) =g, u,v))

[z = g(z,u,v)8u € Ukv € V|F — [2/ = f(x,y,2)8y € Y&z € Z]F
Fig. 2. Differential game proof rules

F(@y,2)
Jalh

tial game for the left-hand side z’. The precise meaning of will be developed

subsequently. If the derivative F’ fé(myz) represents the change of the truth-value of

F along ©' = f(z,y,z2), then makes intuitive sense since its premise means that
there is always a local way for Demon to make F “more true” with y, whatever Angel is
trying with z. So, Demon has a winning strategy no matter how long Angel decides to
evolve. Recall that Angel gets to inspect Demon’s current y action in her nonanticipa-
tive strategy before choosing z, which explains the order of quantifiers in where
Demon first chooses y € Y that works for all of Angel’s z € Z since Angel chooses last.
Differential game variants (rule also have a simple intuition. Angel can reach
the postcondition if, from any state where she has not won yet, there is a progress of
at least some ¢ > 0 towards the goal that, uniformly at all x, she can realize for some =
control choice of hers, no matter what y action Demon chose. The quantifier order z,y
in [DGVlis conservative compared to y, z to simplify the proofs. Other postconditions
are possible based on Lemmal3.9] but[DGV]becomes notationally more involved then.
Differential game refinements (rule relate differential games whose equations
can be aligned when matching the u € U control that Demon sought in its antecedent
with some of Demon’s y € Y control in the succedent if any control z € Z that Angel has
in the succedent can be conversely matched by a control v € V' that Angel already had
in the antecedent. Via the induced identification of controls, Demon’s winning strategy
for the differential game in the antecedent carries over to a winning strategy for the
differential game in the succedent if Demon has more control power in the succedent
while Angel has less. A dual of DGRl for (-) derives by Theorem[3.8] With a cut, DGR
can transform differential games from the succedent to the antecedent by refinement.
As with invariants, it may sometimes be difficult to find good differential game in-
variants or differential game variants for the proof of a property. Once found, however,
they are computationally attractive, since easy to check by decidable arithmetic.
Differential game invariants and differential game variants use syntactic total
derivations to compute differential game derivatives syntactically.

Definition 4.1 (Derivation). The operator V(-) that is defined as follows on terms is
called syntactic (total) derivation from (for simplicity just polynomial) terms to differ-
ential terms, i.e. terms in which differential symbols z’ for variables x are allowed:

V(r)=0 for numbers r € R
V(z) =12 for variables z
V(a+b) =V(a)+V(b)
V(ab) = V(a)b+ aV(b)
It extends to (quantifier-free) first-order real-arithmetic formulas F' as follows:
V(FAG) = V(F)AV(G)
V(FVG) = V(F)AV(G)
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V(a>b) = V(a>b) = V(a) > V()
V(e <b) = V(a<b) = V(a) <V()
V(a=0b) = V(a#b) = V(a) =V(b)

Define F”’ i, to be the result of substituting term 6 for 2’ in V(F') and substituting 0 for

all other differential symbols ¢’ that have no differential equation / differential game.
The relation of the syntactic derivation V(e) to analytic differentiation is as follows,

which identifies the semantics of the syntactic term V(e)i, with a Lie-derivative.

LEMMA 4.2 (DERIVATION). Let 0 be a (vectorial) term of the same dimension as x
and let e be any term, then [V(e)z/]]E = [0]; - Dule]., where D,[e], is the gradient at
state £ with respect to variables x of the value of term e.

PROOF. By a notational variation of a previous result [[Platzer 2012¢, Lem.3.3]. O

The rules in Fig.[2 assume the well-definedness condition from Lemma(3.10] A com-
plete axiomatization for the other hybrid game operators of dG£ [Platzer 2015] is in
Appendix[B] They play no further role for this article, though, except to manifest how
seamlessly differential games proving integrates with hybrid games proving in dG..

While a strong point of dGL is that it enables such a seamless integration of differ-
ential games and hybrid games in modeling and analysis, the subsequent examples
focus primarily on differential games in order to highlight its novel aspects. Consider
the strength game with —1<y<1 abbreviated by y € I, which proves easily with

*
& JyeIV2eI0<3a?(—1+2y+2)
JyelVzel(0< 3x2x/);,1+2y+z
1<’ =2/ =142y + 28y € [&z € 1)1 <P

Using vectorial notation, let y € B be y7 + y3 < 1. Let terms L < M denote the max-
imum speeds of vectors [ and m. The simple pursuit [Isaacs 1967], that vector m can
escape the vector [, proves easily:

*
[ Jy € BVz € B(2(l—m) - (Lz — My) > 0)
JyeBYzeBR(1I-—m) (' —m') >0V L=
Imm|l—m|2>0 —[m' = My,l' = Lz8yeB&2€B] |l—m|*>0

Almost the same proof shows that a positive distance |[—m|?>>1 can be maintained. A
non-convex region y € Y defined as y? = 1 or games with input by just one player work
as well (similar for higher dimensions):
*k
Jy? = 1 (32%23y > daady)
Jy? =1 (3222’ > 4aa’),"?

DGI5 > 922 — 2 — " = 2Py&y? = 1] 2% > 222 — 2
To fit to the simple well-definedness condition (Lemma(3.10), the differential equation
2’ = max(min(x3y, k), —k) could be used instead, which proves for all bounds &k > 0. Al-

ternatively, global bounding ' = 2z3y/(1 + +/(23y)2), which does not change the game
outcome [Griine and Serea 2011]], proves, too. These simple proofs entail for all nonan-
ticipative strategies the existence of measurable control functions to win the game.

=
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The last example proof and the following DGRl refinement proof
*
Vu? = 130<y<1 (2z3y — 23 = 23u)
m[m' = 23y&dy? = 123 > 222 — 2 = [2' = 223y — 2380<y<1] 2 > 222 — 2
combine with a cut to a proof of:
23> 222 =2 = o) =203y — 2380 <y < 1]23 > 227 — 2

Another example for the use of proof rule[DGRIis in the proof of Lemmal5.20] With the
above use of the well-definedness condition, the spiral game proves using rule

*
>0V Vu I-1<2<1V-2<y<2 (z2 +u?>1— —2x(z0 —yu) — 2u(zu + yx) > s)
Fe>0Vr Vu I-1<2<1V—-2<y<2 (1 —2? —u? <0 — (—2za’ — 2ua)ZT TV IV > 5)

xz’ u

D&Y (2 = zx — yu,u’ = 2u + yr&8@—2<y<2&—1<2<1)1 — 22 —u? >0

Example 4.3 (Zeppelin). First continue the differential game of Example in iso-
lation, focusing on an obstacle o = (0,0) at the origin with radius ¢ = 1 for simplicity.
If the Zeppelin propeller outpowers the wind and turbulence (p — r > |v|,r > 0), the
Zeppelin easily wins from any safe position, as proved by arithmetic simplification:

*

Jy € BYz € B (2z1(v1 + py1 + 721) + 2x2(v2 + py2 + r22) > 0)
Jye BYz€ B(2x-a' > O)pry"”'z

m\xF > =) =v+py+rz8dy € B&z € B]|z]? > 2

[R]

For a mediocre propeller (with 0 < r < p < |v|+7), the differential game is significantly
more challenging, but the Zeppelin still wins when it starts at sufficient distance to the
obstacle. It may take up to duration pc to progress by a distance of ¢ in the direction

—r

orthogonal to v, during which the wind field displaces the Zeppelin by —<v. With focal

p—r

—C

point ¢ def Pl which has orthogonal complement ¢ = (—g2,¢1), choose condition C
as the regions outside the tangents through ¢ to the circle of radius c (see Fig.[3):

def
Cécq-(az—q)i lq|2 — ¢t -2 >0

cq-(z—q)+]gP—2¢t - 2>0V eq-(x—q) —]g]2 — gt -2 >0
cq(z1 —q1) + (22 — 2)) + /& + 6 — A(qrz2 — qaw1) > 0
Ve(qi(zr —q1) + q2(z2 — g2)) — ) @+ ¢ — A(qrze — qrr) >0

Both disjuncts of C prove to be differential game invariants:

*
E|yEBVZ€B(Cq-(v+py+rz):|:\/‘q|2_62ql.(U+py+rz)ZO)
Yy eBYzEB(cqa £ I — gt o' >0)"

x/

mCﬁ[x’:erpwarz&flyEB&ZEB]cq-(x—q)j:\/|q|2—02ql-120

using the (two) tangent points of the tangent through ¢ to the circle of radius ¢ as
witnesses for y, after scaling the tangent points by % to be in B:

def C 1
y = —(cqgx/|g]> — 2qt)/c= W(cq + Vg — 2qh)

el
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— &=~ =~ = =

:“#‘ ‘

Fig. 3. Local safety zones for Zeppelin obstacle parcours with same response trajectory (left) and illustration
of construction of safety condition C' and witness for y (right)

The tangent through the (unscaled) tangent point cy is cq- (z — q) £/]q]? — c2¢*+ -2 =0,
which, indeed, goes through cy and ¢. And cy is on the circle of radius ¢, as |cy| = c.

Further, C itself is an invariant by monotonicity (rule M| from Appendix after
splitting into both cases (by rule[1). By monotonicity (M), the proof continues to prove

cq-(x—q) £ ]g? —c2¢t x>0 [2' =v+py +rz8y € B&z € B |z|* > 2

essentially using the Cauchy-Schwarz inequality for arithmetic. The case for o # (0,0)
results from the above proof by replacing x with = — o everywhere, including in C. This
proves the dG. formula (I) in Example[3.3| with

cg-(x—o0—q) £ |q|2—02ql-($—0)20/\c>0/\0§r<p§|v|+r (6)

as a loop invariant if @ is assumed initially. Otherwise, iteration (by axiom [*|| from
Appendix[B) shows the postcondition holds after 0 iterations of the loop anyway and
that (6) is an invariant after the first loop iteration. The proof would be similar without
the assumption p < |v| 4+ r when performing a corresponding case distinction whether
the wind field is outpowered or whether the propeller is mediocre. Observe that Fig.[3]
illustrates that the response from Fig.[I] is outside the respective (green and yellow)
safety zones for the obstacles. It ends squarely within a provably unsafe zone (blue)
and would, thus, continue toward a collision under a best response by the opponent.

5. SOUNDNESS PROOF

The differential game invariant proof rule[DGIlis a natural generalization of differen-
tial invariants [Platzer 2010; Platzer and Clarke 2009; [Platzer 2012c] for differential
equations, also with disturbance, to differential games. Its quantifier pattern directly
corresponds to the information pattern of the differential game.

The only difficulty is its soundness proof. The premise of shows that, at every
point in space x, a local control action y € Y exists for Demon that will, for all local

control actions z € Z that Angel could respond with, make the Lie-derivative F’ i,(m’y’z)
true. In conventional wisdom, this makes the truth-value of F' never change. However,
it is not particularly obvious whether those various local control actions for each z
at various points of the state space can be reassembled into a single coherent control
signal that is measurable as a function of time and passes muster on leading the whole
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differential game to a successful response for each nonanticipative strategy of Angel.
Certainly, the original quantification over nonanticipative strategies and measurable
control signals from the semantics is hard to capture in useful first-order proof rules. It
also took decades to justify Isaacs’ equations for differential games, however innocent
they may look. Fortunately, unlike Isaacs [[1967], differential game invariants have
most required advances of mathematics already at their disposal.

This section proves soundness of the differential game proof rules: If their premise is
valid, then so is their conclusion. Proving soundness assumes the premise (above rule
bar) to be valid and considers a state £ € S in which the antecedent (left of —) of the
conclusion (below bar) is true to show that its succedent (right of —) is true in &, too.

The remainder of this section proves soundness, first of differential game refine-
ments (Sect.[5.1) then of differential game invariants (Sect.[5.2-Sect.[5.6) and differen-
tial game variants (Sect.[5.7). The soundness proof for [DGI proves the arithmetized
postcondition to be a viscosity subsolution (Sect.[5.3) of the lower Isaacs partial differ-
ential equation that characterizes (Sect.[5.4) the lower value whose sign characterizes
(Sect.[5.2) winning regions (Sect.[3) independently of premature stopping (Sect.[5.5).

5.1. Differential Game Refinement

Rule[DGRIcan be proved sound using the notions introduced so far. The key is to exploit
the Borel measurability and existence of semialgebraic Skolem functions to extract
measurable and nonanticipative correspondence functions from its premise. Semialge-
braic functions are Borel measurable and, thus, suitable for composition (Remark[2.1).

LEMMA 5.1. Semialgebraic functions are Borel measurable.

PROOF. Let f be a semialgebraic function. The proof of its Borel measurability is by
induction along the Borel hierarchy using Remark[2.1]
1) The preimage f~!(A) of any semialgebraic set A under a semialgebraic function f
is semialgebraic [Basu et al. 2006, Proposition 2.83], thus, Borel measurable.
2) By Remark the preimage ffl(AC) = (J“l(A))[J of the complement AL of any set
A whose preimage f~!(A) is Borel is a complement of a Borel set and, thus, Borel.
3) By Remark(2.1} the preimage f~*(,c; Ai) = ;e /™' (A;) of an intersection of any
family of sets A; whose preimages f~1(4;) are Borel, is an intersection of Borel sets
and, thus, Borel. O

The proof of soundness of rule is based on composing the winning strategy
from the antecedent with a semialgebraic Skolem function extracted as a witness from
the local semialgebraic correspondence of the variables from the premise to obtain a
winning strategy for the succedent. This construction can be shown to preserve mea-
surability of the resulting controls by Lemmal5.1] and to lead to a subsumption of the
differential games. Since the semialgebraic Skolem function for y from the premise is
Borel, its composition can be used to show that Angel already had all control choices
in the antecedent’s differential game that she has in the succedent’s differential game.

THEOREM 5.2 (DIFFERENTIAL GAME REFINEMENT). Differential game refine-
ments are sound (proof rule DGR).

PROOF. The formulas u € U,v € V,y € Y,z € Z only have the indicated free vari-
ables, so write [Z] for the set of values for z that satisfy z € Z, etc. The premise implies

FEVYueUdyeYVzeZweVVe (f(x,y,z) :g(x,u,v))

Since this formula and its parts describe semialgebraic sets and real-closed fields have
definable Skolem functions by the definable choice theorem [Marker 2002, Corollary
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3.3.26], this induces a semialgebraic, so by Lemmal5.1] also Borel measurable, function
g: [U] — [Y] such thatﬂ

FVzeZ3ve Vv (f(z,j(u),z) =g(z,u,v)) (7

The validity similarly induces a semialgebraic, thus, by Lemmal/5.1] Borel measur-
able function 7 : [U] x [Z] — [V] such that

EVzx (f(x,g(u), 2) = g(x, u, v(u, z))) (8)

To show validity of the conclusion, consider any state £ in which its antecedent is true
and show that its succedent is true. That is, assume & € 0,/— (.4, 0)ducvavev ([F]), 1.€

VI>0% € Sy v Fu € My W<C<T 2, (G €1, (u)) € [F] ©
It remains to be shown that & € 6,/ ¢(, y .ye2yev ez ([F]), which is
VI'>0VB € Sy z dy € My W<C<T z4(¢;€,y,B(y)) € [F] (10)

Consider any 7' > 0 and 3 € Sy _, z. From (9), obtain some u € M, corresponding to

y(u)(s) © 5 (u(s), B(7 o u)(s))

which defines a function v : My — My, because the composition 3 ou of Borel measur-
able function § with measurable u is measurable (Remark, which makes 5(y o u)
measurable and so is its composition with the Borel measurable v since © was measur-
able to begin with. The function ~ is also nonanticipative, so is a strategy v € Sy_,v,
because for all n < s < T and u, 4 € My:

if u(t) = a(r) forae.n<7<s

s0 (you)(r) = (Fou)(r) forae.n<7<s
thenﬁ(yOU)( ) =B(yoa)r) forae.n<7<s
hence v(u)(1) = v(a)(7) forae.n<7<s

because 8 € Sy_,z and the compositions with Borel measurable functions 7y and ¥ pre-

serve equality a. e Define the control y for strategy S by y(s ) (y ou)(s) = g(u(s)).
The corresponding responses z ¢ and z, of the respective differential games satisfy

2 (s)=F(x1(s),y(s), B)())=F (x4 (s), (G o u)(s), B(7 0 u)(s))

2y (8)=g(w4(s), u(s),7(u)(s))=g(24(s), u(s), v (u(s), B(H o u)(s)))
which (8) equates as follows:

F(5(5), 5u(3)), 87 0 u)(3)) = 95 (5), u(s), 7 (u(s), B(F 0 u)(s))

so that the response z s solves the same differential equation that x, does, which shows
zry = x4 by uniqueness (Lemma[3.5). Consequently, the antecedent @ implies (1
which shows the conclusion of [Kﬂj to be valid since the initial state ¢ was arbitrary. D

7Substitution of a semialgebraic function g(u) for y into a formula F(u, y) of real arithmetic is definable, e.g.,
by Vy (y = y(u) — F(u,y)). The subsequent proof only needs § to be measurable, which the measurable
selection theorem [Repovs and Semenov 1998, §6 Theorem 6.13] guarantees. Its inconvenience is that
cannot be syntactically inserted into the logical formulas but their mathematical equivalents would be used.
8If f is function and g(7) = §(7) for a.e. 7, then f(g(7)) = f(§(r)) for a.e. 7, because the composition f o g
satisfies that {7 : f(g(7)) # f(g(7))} C {7 : g(7) # g(7)} is contained in a set of measure 0.
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5.2. Values of Differential Games

Differential games have a unique payoff (3) for each pair of controls y € My, 2z € My
and initial data 7,¢ by Lemma[3.5] The payoff may change when the players change
their control, though. How the players best change their controls depends on their
respective opponent’s control, and vice versa. Still there is a sense in which there is
an optimal payoff if both players rationally optimize their respective control. Different
choices for the informational advantage give rise to two (generally different) ways of
assigning optimal payoff to a differential game: the lower and the upper value, whose
signs can ultimately be related to the existence of corresponding winning strategies.

Using the response z(s) = z(s; £, y, B(y)) of differential game (2) for initial condition

z(n) = 5 with time horizon T, the lower value of differential game (2) with the player
for Z minimizing payoff g(x (T)) and the player for Y maximizing g(«(7T)) captures the
optimal payoff with nonanticipative strategies 5 € Sy _, 7z for minimizer for 7, i.e. when
the minimizer for Z has the informational advantage to move last [Elliott and Kalton
1974; |Evans and Souganidis 1984; Bardi et al. 1999]. It is defined as:

V(n,§) = }Sn sup 9(=(T;€,y,8(y))) (11)
Y—>Zy
= inf sup V(n+o,z(n+o;&y,8y))) (12)

BESy 2z yeEMy

where is the dynamic programming optimality condition [Elliott and Kalton 1974;
Evans and Souganidis 1984, Thm 3.1] for any 0 < n < n+ o0 < T and £ € R". With
the response z(s) = z(s; £, a(z), ), the upper value of differential game (2) captures the
optimal payoff when maximizer for Y moves last and is defined as:

Um,§ = sup inf g(z(T3€ a(2),2)) (13)
acSzy €Mz
= sup inf Um+o,z(n+0;€a(z),z)) (14)

€Sz y €Mz

forany 0 <n <n+o <T and ¢ € R", again with being the dynamic programming
optimality condition for differential games. The lower and upper values are bounded
and Lipschitz [Elliott and Kalton 1974;|Evans and Souganidis 1984, 3.2]:

THEOREM 5.3 (CONTINUOUS VALUES). Forany T > 0, both V and U are bounded
and Lipschitz (in n, ).

Lower and upper values are mixed infima/suprema, so it is not clear whether the op-
tima are achievable by any concrete control or a concrete nonanticipative strategy. The
following observation relates signs of values V and U to the existence of strategies and
controls for winning their corresponding differential game at time 7. Positive values,
e.g., are equivalent to winning strategies winning with positive lower bounds.

LEMMA 5.4 (SIGNS OF VALUE). Fix any time horizon T > 0.

(1) V(0,€) > 0iff B>0Y6 € Sy 2z y € My g(x(T3€,y,8(y))) > b.
(2) V(07§) <0 Lffﬂb<OEﬂ € SY—)ZV’U € Myg( (T7£7y7ﬁ(y))) <b.
) V(0.6 > 04ff <03 € Syoz 3y € My 9(alT36,5.5()) = b
5) V(0,8) =0iff >0 (V8 e SyzW e Myg( (T 7y7 B(y))) > —band
EHﬁG‘SY—)ZW:UE-/\/th( ( ; ay) ( )))S )
Similar relations hold for the upper value, e.g.:
6) U(0,8) >0iff >0F € Szy V2 € Mz g(2(T; €, a(2),2)) > b
(7) U(0,&) > 0iff W<03a € Szy Vz € Mz g(x(T; €, a(z),2)) > b
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PROOF. Caseis the contrapositive of Case which proves as follows. If V(0,¢) < 0,
then V(0, &) < 20 for some b < 0. Consequently, by definition , 18 € Sy, z such that
sup, ey 9(2(T5€,y,8(y))) < b. Hence, 33 € Sy .z Wy € My g(x(T;€,y,8(y))) <b<0.
The converse direction proves accordingly, where b, 3 are witnesses for the inequality

V(0,8) = infges, ., , supyerry, 9((T5€,y, B(y))) < b <0.
Casel is the contrapositive of Case(l] which proves as follows. If V(0,¢) > 0, then
V(0,&) > 2b for some b > 0. Thus, by 1.! VB € Sy sz sup,eny, 9(=(T;6,y, By ))) > 2b.

Hence, V5 € Sy_.z Fy € My g(«(T:&,y,8(y))) > b.
Casel5| combines Case[3] with Caseld] Cases[6land [l are dual. O

Contrary to occasional misconceptions in the literature, V(0,£) > 0 does not imply
the existence of a control achieving nonnegative value for each nonanticipative strat-
egy. As elaborated in its consequence, Case value V(0,¢) = 0, which satisfies > 0 as
well, merely implies that controls can get arbitrarily close to payoff 0 without reveal-
ing a prediction about its sign. This is problematic, because it is precisely the sign that
matters for determining whether there really is an actual Winning strategy or not.

With significantly more thought, however, there is a way of rescuing the situation for
the differential games of dGL. The following Lemmal5.5is a stronger version of Case[3|
and shows that the simplicity of Case[l] does, indeed, continue to hold for > instead
of >. The proof is a more complex functional- analytlc argument based on the results
developed in the remainder of this section using Tychonoff’s theorem, the Borel swap,
and a continuous dependency result for Carathédory solutions that justifies continuous
responses of differential games. This stronger version, Lemmal[5.5] makes it possible
to lift differential game invariants to closed sets. It has been stated in the literature
before [Mitchell et al. 2005, Lem. 8] but only without proof or with incorrect proof.

LEMMA 5.5 (CLOSED SIGNS OF VALUES). Let T > 0. Then V(0,&) > 0 iff

VB S SY—>Z EHy S MY g(x(T,f,y,ﬁ(y))) 2 0
PROOF. ’: This direction follows from Case[3] of Lemmal5.4]as 0 > b for all b < 0.
“=": Let B d—ef {b ./\/ly — Mz Borel measurable}. Note that B C Sy .z, because

the mapping b(y)(s) de b( (s)) is nonanticipative, even independent of other times. The
infimum over bigger sets is smaller, thus, by V' (0,¢) > 0:

0< nf sup g(x(T5€y,0(y)) < inf sup. 9(2(T; €, y,0(y))))

BESY »z ye My €B yeM
= max min T:&,y,2 by Lemmal|5.6
= o min g(a(T5€,5,2) y

Hence, Fy € My Vz € Mz g(x(T;&,y,2)) > 0 as min, max extrema will happen for some
concrete y, z. Since this applies for all possible values 3(y) € Mz of any § € Sy_ 7,
this implies V8 € Sy .z Iy € My g(x(T;€,y,8(y))) > 0. The last step is the counterpart
of Herbrandization for measurable functions.

It remains to see that Lemmal5.6|is applicable. The [0, T]-fold product {y : [0, 7] — Y}
of compact space Y is compact by Tychonoff’s theorem [Bourbaki 1989, §9.5.3] with re-
spect to the product topology, i.e. the topology of pointwise convergence, i.e. y,, — y for
n — oo iff y,,(s) — y(s) for n — oo for all s. As pointwise limits of measurable functions
are measurable [Walter 1995, 9.9], My is a closed subset, so remains compact [Bour-
baki 1989, §9.3.3]. Similarly, Mz is compact. That g(«(T;€,y, z)) is continuous (in the
product topology, which is the one of pointwise convergence) as a functional of y and z,
as required by Lemmal5.6] follows from Lemmal5.8|and continuity of g (Def.[3.4). O

Lemmal5.5| would not hold for infinite time horizon 7' = oo or non-compact control
sets Y, Z. For example, ' = —z converges to 0 for T' — oo without ever reaching it and
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x' = —2y&y € [0, 00) converges to 0 for y — oo at T = 1. Likewise 2’ = —x/y&fy € (0, 1]
converges to O fory — 0at T = 1.

The next lemma explains how the quantifier order seemingly swaps in the proof of
Lemma The quantifier swap is accompanied by a change of typed’] though, to move
from Borel-measurable strategies (which are functions on controls) to plain controls
by measurable Herbrandization. The maximum over a compact A of the minimum
over a compact B of a continuous function is the same as the infimum over all Borel-
measurable responses b : A — B of the supremum over A of said function.

LEMMA 5.6 (BOREL SWAP [[QUINCAMPOIX 2011f]). Ifg: A x B — R is continuous

on compact A, B and B def {b: A — B Borel measurable} then:

max min g(a,b) = jnf sup g(a,b(a))

b) = f gla,b
min max g(a, b) ilelg;relAg( (a))

PRrROOF. Both equations imply each other by duality. It suffices to prove the first one.
As A, B are compact and g is continuous, sup,¢ 4 infyep g(a,b) = max,c 4 minyep g(a, b),
because continuous functions assume their extremal values on compact sets.

“<”: Fix b € B. For any a € A: g(a,b(a)) > infyep g(a,b). Since this inequality is
a weak inequality and holds for all a € A, it continues to hold for the supremum:
SUPge 4 9(a,b(a)) > sup,e 4 infpep g(a,b). Since b € B was arbitrary, this weak inequality
continues to hold for the infimum: infjc 5 sup,c 4 9(a, b(a)) > sup,¢ 4 infre s g(a, b).

“>”: Fix ¢ > 0. For any a € A choose a b, € B such that g(a,b,) < infyep g(a,b) + 5,
which is possible by the definition of infima. Since g is continuous and B compact, the
function a — inf,c 5 g(a, b) is continuous. As a continuous image of a compact set there,
thus, is a finite open cover O; C B and b; € A such that g(a,b;) < infyep g(a,b) + ¢ for
all a € O;. Thus, g(a,b(a)) < infpep g(a,b) + € for all a € A for the function b € B:

b(a) Eb; ifa € 0;\ | J O (15)

7<i

which is Borel measurable as a piecewise constant composition of constants on a finite
number of Borel sets. Since the above inequality holds for all « € A, it continues to
hold for the supremum: sup,c 4 g(a,b(a)) < sup,c 4 infrep g(a,b) + €. Since this upper
bound holds for b € B from , it continues to hold for the infimum over all b € B:
infzc g sup,ca 9(a,b(a)) < sup,eq infoep g(a,b) +e — sup,c 4 infrep g(a,b) fore = 0). O

Continuous dependency results for Carathéodory solutions on their initial data are
standard [Walter 2000]. Continuity of the payoff functional in the product topology
for the proof of Lemmal5.5| needs continuous dependence on the right-hand side of
the differential equation (2), though. The following lemma shows that Carathéodory
solutions, fortunately, also depend continuously on the right-hand side if uniformly
bounded and uniformly Lipschitz. Even Carathéodory solutions of differential equa-
tions are smoother than the equations in the sense that pointwise converge of the
equations implies not just pointwise but even uniform convergence of the solution.

LEMMA 5.7 (CONTINUOUS DEPENDENCE). Let h,:[n, T|xRF—R* be a sequence of
functions that are measurable in t, uniformly L-Lipschitz in x, and with common supre-

9This quantifier swap is related to the swap from Vz 3y p(x,y) in first-order logic to IF Vz p(z, F(z)) in
second-order logic with a function F'.
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mum bound. If h,, — h for n — oo pointwise and x, x, are Carathéodory solutions of
a'(s) = h(s,2(s)) 2(5) = ha(s,2n(s)) (1) =2n(n)
then x,, — x uniformly on [n,T] for n — cc.

PROOF. The assumptions state that |k, (t,z)| < B, |hy(t,2) — hyn(t,y)| < L|z — y| for
all n,t,z,y and h,(t,z) — h(t,z) for n — oo and all ¢,z. By [Walter 2000, §10.XIX],
x and z,, are Carathéodory solutions of their respective differential equation iff they
satisfy corresponding Lebesgue integral equations:

x(t) = x(n) —|—/ h(s,z(s))ds

Zn(t) = z,(n) Jr/ b (s, 2 (s))ds

Consequently, they differ by

2(t) = a(t)] = | / h5,2()) — (5, 7a(5)) s
= / h(s5,2(5)) — (5, 2(5)) + ha(5,2(5)) — (5, 20 (5))di|
/ (5, 2(5)) (5, 2(5)) s+ / o (5,2(5))~ o (5, 2 (5)) s
< [ st < sl s [ lote) - (o

Due to its norm, the first term is nondecreasing, hence Gronwall’s inequality implies:

|x(t) — 2n(t) |<ef Lds/ |h(s,2(8)) — hn(s,2(s))|ds = 0

eLt—Ln

for n — oo by dominated convergence [Walter 1995, 9.141], as |h(s, z(s))—hn (s, z(s))| — 0
for all s and |h(s, z(s)) — hn(s, z(s))| is bounded by the Lebesgue-integrable function 2B
since all h,, are bounded by the same B and so is h as their pointwise limit. O

Since the responses of differential games are Carathéodory solutions of differential
equation (2), Lemmal5.7] generalizes to a continuous dependency result for differen-
tial game responses (in the product topology corresponding to pointwise convergence,
which, as in Lemmal5.7| even leads to a uniformly convergent response).

LEMMA 5.8 (CONTINUOUS RESPONSE). Responses of a differential game depend
continuously on the controls. That is, if vy, — y and z, — z for n — oo pointwise, then
their responses converge x(; &, yn, z2n) — x(+;&,y, 2) for n — oo uniformly on [n, T).

Proor. Let y, — y and z, — z for n — oo pointwise. Then the respective right-
hand sides of (2) converge: f(s,z,yn(s), 2n(s)) = f(s,,y(s), 2(s)) for n — oo pointwise

by continuity of f. The responses z(+;¢,y, z) and z,,(s) def z(8; &, Yn, 2n) solve (2 Ii which,
with the abbreviations h(s,z) % (s, z, y(s), 2(s)) and hy, (s, z) & f(s 2, yn(8), 2n(8)), is
a'(s) = h(s, x(s)) z(n) =
25, (8) = hn(s,2n(s)) Ty (n) =
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Since h,(s,x) — h(s,z) pointwise for n — oo, h, and h satisfy the assumptions of
Lemmal5.7| using the Lipschitz constant L of f in = and a bound on f from Def.[3.4]
Consequently, z,, — = uniformly for n — co by Lemmal5.7, O

Controls are usually not continuous over time, nor continuous functions of the state
[Hajek 1975, §2.2]. Yet, Lemmal5.8|entails that the responses still depend continuously
on the controls in the product topology. Lemmal5.8 may not hold when replacing z,, by
B(yn), because the nonanticipative strategy S does not generally depend continuously
on y,, so 3(y,) may not converge to 5(y) as y, — y. This is despite the observation:

Remark 5.9. Sy_, 7 is compact in the product topology of pointwise convergence.

PRrROOF. By Tychonoff’s theorem [Bourbaki 1989 §9.5.3], also the product space {5 :
My — My} is compact since My is compact (proof of Lemma. Since pointwise
limits of nonanticipative functions are nonanticipative, Sy _, 7 is a closed subset, thus,
still compact [Bourbaki 1989, §9.3.3]. To see that pointwise limits of nonanticipative
functions are nonanticipative, let 3, — 3, i.e. 5,(y) — B(y) for all y, which, because of
the nested product topology, is 5, (y)(s) = B(y)(s) for all s and all y. Let y(r) = () for
a.e.n <7 <s.Then, 8,(y)(7) = B.(9)(7) for a.e.n < 7 < s,as B, € Sy_z for all n. This
equality a.e. is preserved for both limits 5, (y)(7) — B(y)(7) and B,(9)(7) — B(9)(T)
such that 8(y)(7) = B(g)(7) fora.e.n <7 <s. O

Equations (11)—(14) define the lower and upper values of a differential game, which,
by Lemmas [5.4 and 5.5 characterlze the existence of winning strategies, but neither
the original deﬁmtlons 11),(13) nor the dynamic programming equations (12),(14) are
computable principles [Platzer 2008] except possibly by discrete approximation, which
can lead to erroneous decisions. This is what makes the proof rules in Fig.[2|interesting.

5.3. Viscosity Solutions

The lower (11) and upper values (13) of a differential game, whose sign characterize
winning regions (Lemmas [5.4]and [5.5), can be characterized as satisfying a partial dif-
ferential equation when usmg a suitably generalized notion of solutions that tolerates
the fact that value functions are often non-differentiable, so are no classical solutions.

This section recalls viscosity solutions, which have been identified as the appropriate
notion of weak solutions for Hamilton-Jacobi type partial differential equations [Cran-
dall and Lions 1983}; Barles 2013|. The presentation uses an elegant characterization of
viscosity solutions with Fréchet sub- and superdifferentials, which capture all deriva-
tives from below and from above a function [Bressan 2011; Barles 2013|]. The con-
ceptual simplifications made possible by Fréchet sub/superdlfferentlals for differential
games are also exploited in the proofs about the expressive power of dGL (Sect.[6). They
are based on single-sided understandings of the gradient operator D = ( 821 ey a“ ).
To emphasize the affected variables x, the gradient operator D is also written as D,.
Another common notation for a single variable ¢ is to write z; instead of D;x.

Definition 5.10 (Subdifferentials, superdifferentials). Let 2 C R™ be open. The su-
perdifferential D" u(x) of a function u : Q@ — R at x € Q and the subdifferential D~ u(z)
of u at = are defined as:

D u(x )d_ef{ € R™ : limsup (y)_u(ﬁ)_ﬁ(y_l) <0}
y—a y— =
) ¥ e e M)
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~

Fig. 4. One of infinitely many superdifferentials p € Dt u(x) at z (left) and one of many subdifferentials
p € D™ u(x) at x (right) for two functions

Both Dtu(x), D~ u(z) are closed and convex [Aubin and Frankowska 1990, §6.4.3].
They align with geometric notions (illustrated in Fig.[d) and with the classical condi-
tions for viscosity solutions in terms of test functions as follows [Barles 2013, Thm. 3.3].

LEMMA 5.11 (CHARACTERIZATIONS [BRESSAN 2011, LEM. 2.2,2.5]). Let u be a
continuous function on an open set Q) C R™, i.e. u € C'(Q)). Then

(1) p € DVu(x) iff the hyperplane y — u(x) + p - (y — x) is tangent from above to the
graph of u at x. That is:
u(z) +p- (y—x) > u(y) for all y sufficiently close to x
Similarly, p € D~ u(z) iff the hyperplane is tangent to the graph of v at x from below:
u(z) +p- (y—x) < u(y) for all y sufficiently close to x

(@) p € DYu(x) iff there is a v € CY(Q), i.e. a continuously differentiable function
v:Q — R, such that Dv(x) = p and u — v has a local maximumET] at x.

(3) p € D u(x) iff there is a v € C(Q) such that Dv(z) = p and u — v has a local
minimum at z.

@) If DT u(x) # 0 and D~ u(z) # 0, then u is differentiable at .

(5) If u is differentiable at x, then DV u(z) = D™ u(z) = {Du(z)} is the gradient Du(z).

6) {r€Q:DTu(z) # 0} and {x € Q: D~ u(x) # 0} are dense in Q.
Superdifferentials of minima (e.g., Fig.[]eft) as well as subdifferentials of maxima

(Fig.[dFright) are well-behaved even if differentials and gradients are ill-defined at the
points of non-differentiability.

LEMMA 5.12. The superdifferential D u(x) of the pointwise minimum u(z) def
min; u;(z) of the functions uy, ..., u; : @ — Rat x € Q is the convex hull of their support
(the case D~ max; u;(x) is analogous):
Dt u(z) = Conv U JARTHED)
PROOF. “2”: Let p € DT u;(x) for some i with u;(z) = u(z), then p € D" u(zr) because:
Jim sup uly) —ul@) —p-y—2) sup ui(y) —ui(z) —p- (y — )
y—w ly — x| Yoz ly — x|

<0

10The test function v can be assumed to satisfy v(z) = u(x) without loss of generality in both cases. Further-
more, u — v can be assumed to have a strict local maximum/minimum at z. The property is also equivalent
when using smooth v € C°° () instead [Crandall et al. 1984].

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 19, Publication date: July 2017.



Differential Hybrid Games 19:25

because u;(z) = u(z) and u(y) < u;(y) for all y and i. Since DT u(z) is convex [Aubin
and Frankowska 1990, §6.4.31, D" u(z) thus contains the convex hull of all such vectors
p € DTu;(x) for some ¢ with w;(z) = u(z), which results in the right-hand side.

“C”: Consider any z and let u(z) = u;(z). Let p € DV u(x), i.e. for all y close to x:

p(y— o) Suly) —u(r) = minu;(y) —ui(z) < wily) —ui(z) O

Subdifferentials and superdifferentials enable a conceptually easy definition of vis-
cosity solutions of partial differential equations: subsolutions via lower bounds for all
superdifferentials and supersolutions via upper bounds for all subdifferentials.

Definition 5.13 (Viscosity solution). Let F': Q) x R x R® — R be continuous with an
open 2 C R™. A continuous function u € C'(Q) is a viscosity solution of the first-order
partial differential equation (PDE)

F(z,u(z), Du(z)) =0 (16)
for terminal boundary problems iff it satisfies both:

subsolution: F(z,u(x),p) > 0 for all p € D" u(z) and all x € Q
supersolution: F(z,u(z),p) < 0for all p € D™ u(x) and all x € Q

By Lemmal5.11] viscosity solutions are classical solutions, i.e. equation holds for
the gradient Du(z), at points 2 where they are actually differentiable. Otherwise only
the viscosity inequalities hold for the super- and subdifferentials, respectively. PDEs
are not extensional, though: and —F(z,u,Du) = 0 can have different viscosity
solutions [Bressan 2011, Remark 4.4], yet have the same classical solutions (if any).

The partial differential equation of relevance for differential games is the termina
evolutionary Hamilton-Jacobi equation

ug+ H(t,z,Du) =0 in (0,T) x R™ (17a)

uw(T,z) = g(z) in R"” (17b)

with a continuous Hamiltonian H : [0,T7] x R® x R* — R and a bounded and uni-

formly continuous ¢ : R™” — R as terminal value at 7. Bounded, uniformly continuous

solutions suffice here by Theorem[5.3] By (17a), the Hamiltonian H describes the time-
derivative u; of u but its value depends on the space-derivatives Du = D, u of u.

Comparison theorems [Bressan 2011, Thm. 5.3][Barles 2013, Thm. 5.2][Bardi et al.

1999, §2, Thm. 3.3] that propagate inequalities™ of sub- and supersolutions on the
boundary to inequalities on the whole domain are the major workhorses for PDEs.

THEOREM 5.14 (COMPARISON). Let u,v be bounded, uniformly continuous sub-
and supersolutions of (17a) and v < v on {T} x R", then u < v on [0,T] x R™ pro-
vided at least one of the following conditions is true:

(1) H is Lipschitz, i.e. there is a C such that
|H(t,2,p) — H(t,z,q)| < Clp—q
[H (t,z,p) — H(s,y,p)| < C(|t — s| + [z — y|)(1 + |p])
(2) wis Lipschitz in x uniformly in t, i.e. |u(t,z) — u(t,y)| < Lz — y| for all x,y,t

(3) vis Lipschitz in x uniformly in t

11Signs in terminal value problems reverse compared to initial value problems [Evans and Souganidis 1984;
Evans 2010, Chapter 10.3]. A terminal subsolution u of induces a corresponding initial subsolution
w(t,z) = u(T —t,z) of wy — H(T — t,z, Dw) = 0,w(0,z) = g(x) and likewise for supersolutions.
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Generalizations to bounded open {2 or to non-Lipschitz Hamiltonians satisfying mod-
ules of continuity exist [Barles 2013, Thm. 5.2]. Comparison theorems are powerful but
limited to comparing subsolution u and supersolutions v of a single PDE. Fortunately,
they can be generalized to a monotone comparison principle for two different PDEs
with related Hamiltonians. If u is growing faster than v but ends below, so v < v at T,
then v must have been smaller all along, which remains true for viscosity solutions:

COROLLARY 5.15 (MONOTONE COMPARISON). Assume one of the conditions of The-
oreml5.14| holds or that Hamiltonian J is Lipschitz. Let u be a viscosity subsolution of
(17a) and let v be a viscosity supersolution of

v+ J(t,z,Dv) =0 in (0,T) x R"
Ifu<von {T} xR™and H < J, then u <wvon [0,T] x R™
PROOF. v is a supersolution of v; + J(¢, z, Dv) = 0 if:
T+ J(t,z,p) <0 ¥Y(r,p) € D" v(x) (18)
Thus, v is also a supersolution of v; + H(¢,z, Dv) = 0, i.e.
T+ H(t,z,p) <0 ¥Y(r,p) € D7 v(x)

which follows from using H < J. In the case where the conditions of Theorem|5.14
are satisfied, this implies v < v by Theorem|5.14] Otherwise J is Lipschitz, and the
proof proceeds as follows. First, u is a subsolution of u; + H (¢, z, Du) = 0 if:

T+ H(t,z,p) >0 Y(1,p) € DT u(x) (19)
Thus, u is also a subsolution of u; + J (¢, z, Du) = 0, i.e.

T+ J(t,z,p) >0 ¥(r,p) € DTu(z)
which follows from using J > H. As J is Lipschitz, Theorem[5.14]implies v < v. O

5.4. Isaacs Equations

Seminal results [Souganidis 1985 Barron et al. 1984; [Evans and Souganidis 1984]
characterize the upper and lower values of differential games as weak solutions of the
Isaacs partial differential equation [Isaacs 1967|], which is a Hamilton-Jacobi PDE.
Isaacs intuitively identified these PDEs for differential games, which were only jus-
tified to be in correct alignment with differential games after an appropriate notion
of weak solutions had been developed decades later [Souganidis 1985]. For reference,
Appendix[C| provides a proof of Theorem[5.16]for the differential games in this article.

THEOREM 5.16 (ISAACS PDE [EVANS AND SOUGANIDIS 1984, THM 4.1]).  The
lower value V from of differential game is the unique bounded, uniformly
continuous viscosity solution of the lower Isaacs partial differential equation:

Vi+ H (t,z,DV) =0 (0<t<T,zeR") (20)
V(T,2) = g(x) (= € R)

H(t = in f(t '
(t2,) = mamin (6, 2,3,2) - »

The upper value U from (13) is the unique such solution of the upper Isaacs equation:

{Ut+H+(t,x,DU) =0 (0<t<T,zeR")
U(T,z) = g(x) (zr e R™)

(¢ = mi t .
(t,x,p) rzrggryneagf( T, Y Z) D

(21
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The first equation of Lemmal5.6]illustrates the swapped quantification order of lower
value compared to its Hamiltonian due to different types. The second equation
of Lemmal5.6|similarly explains the quantifier swap from upper value compared to
its Hamiltonian (2I). The following result has been reported without a detailed proof,
but is straightforward with the help of monotone comparisons (Corollary[5.15).

COROLLARY 5.17 (MINIMAX [EVANS AND SOUGANIDIS 1984, COROLLARY 4.2]).
V < U holds always. If H* (t,z,p) = H™ (t,z,p) forall 0 <t < T,z,p € R", then V = U,
i.e. the game has value.

PROOF. H~ < H™ holds by definition, so monotone comparison Corollary|5.15|im-
plies V < U.If H- = H* holds, too, then Corollary[5.15|also implies U < V. O

The fact V < U follows from the observation that the player who chooses last is at an
advantage for optimizing the resulting value. The assumption H* (¢, z,p) = H™ (¢, x,p)
corresponds to the Hamiltonians being independent of the order of choice, which im-
plies V = U so that the order of choice in the whole differential game is irrelevant.

If one fixed finite time horizon T were sufficient, Theorem[5.16] could be used with
Lemmal5.4] and to answer the question of the existence of winning strategies for
this time horizon T"if its PDE can be solved. Numerical approximation schemes for
(20) are, indeed, one way of answering game questions, but they are inherently subject
to discrete approximation errors that may lead to erroneous decisions that have not yet
been overcome [Mitchell et al. 2005]|. By contrast,[DGIlprovides a sound way of proving
the existence of winning strategies even for all time horizons. Yet, proving proof rule
itself to be sound requires more effort, which the subsequent sections pursue.

5.5. Frozen Games

For a fixed time horizon T, the results from Sect.[5.2| and characterize winning
regions of differential games by signs of the solutions of their corresponding PDEs,
but that only helps if Angel commits to a fixed time horizon 7" and maximal stopping
time ¢ = T by advance notice. Lifting these characterizations to the case where Angel
decides to stop early by choosing { < T is possible by repeating the above analysis for
minimum payoff games [Serea 2002]|. This leads to less convenient PDEs, though.

A more modular way is to add an extra freeze input [Mitchell et al. 2005]] for Angel
player, which she can control to slow down or lock the system in place. A freeze factor
¢ € [0, 1] multiplies the differential game and is under Angel’s control, which will keep
the system unmodified (¢ = 1), in stasis (¢ = 0), or in slow motion (0 < ¢ < 1). Angel
controls both time ¢ and freeze factor c. So the frozen system does not actually need
early stopping, because she can freeze it with control choice ¢ = 0 instead in order to
lock its state in place. The quantifier for stopping time ¢ in Def.[3.7]is, thus, irrelevant:

LEMMA 5.18 (FROZEN VALUES). For any atomically open formula F it is the case
that: € € 0p—cf(a,y,2)8yey&zczrcelo) ([F]) iff its lower value satisfies V(0,&) > 0 for all

T > 0 with the arithmetization g df R s payoff. Accordingly for atomically closed F.

PROOF. “=": by Caseof Lemma (or Lemma for b d:efg(f)/2 by Lemmal3.9

“«<”: By Lemma[3.9] and Case[l] of Lemmaf5.4] it only remains to be shown that
stopping time ¢ can always be instantiated to time horizon 7' in Def.[3.7]for this game.
Instead of stopping prematurely at ( < T, Angel can set her extra freeze input ¢ to 0
at time (, because ¢ = 0 will already keep the value of x constant. The step function

def [1 ift <(
C(t)_{o ift>¢
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required as the appropriate control input for the freeze factor to freeze at time ( is
Borel measurable. The proof for closed F uses Lemmalf5.5|instead of Lemmalf5.4] O

This result exploits that durations of differential games are unobservable except when
adding a clock ¢ = 1 to the differential game to measure the progress of time, which
would be frozen along with x, though, so that freezing is unobservable by the players.
When replacing all differential games with their frozen version, Lemmal5.18|implies
that the results from Sect.[5.2H5.4] characterize their winning regions by signs of val-
ues. That approach works flawlessly. It is more efficient to exploit the structure of the
frozen game to remove the freeze factor ¢ with a minimal change in the Hamiltonian.

LEMMA 5.19 (FROZEN ISAACS). According to Theorem[5.16] let H~ and H* be the
Hamiltonians for the lower and upper values of

' = flz,y,2)8y e Y&z € Z (22)
Then the lower and upper values of the frozen differential game
o =cf(z,y,2)8y e Y&z € ZNce|0,1] (23)
respect the lower and upper Isaacs equations with Hamiltonians J~ and J™:
J(t,z,p) = min(0, H™ (¢, z,p)) (24)

Jt(t,z,p) = min(0, H* (¢, ,p))
PROOF. By Theorem[5.16] the lower value and upper value of satisfy the lower
and upper Isaacs equations with the following Hamiltonians, which simplify as shown:

J_tav = i i t577 P = i '07 ta77 °
(t,z,p) r;?%?g?ﬁéﬂ]cf( T,Y,2) P rynaggggmm( f(t,z,y,2) - p)

= HllIl(O, I;leaﬂzi gg? f(ta z,Y, Z) * p)

J+t57 = i i t577 P = .07' ta77 °
(t,z,p) Cél}éﬂ]rz%l??ea?“f( ,y,2) - p = min( gggglggf( T,Y,%) " p)

since min and max are mutually distributive. By monotone comparison Corollary|5.15]
those transformations do not change the solution. O

When starting both differential games in the same initial state with the same pay-
off, the lower and upper value of (22), thus, dominate the lower and upper value, re-

spectively, of (23), by Corollary[5.15] because J~(t,z,p) < H~(t,z,p) and J*(t,z,p) <
H™(t,x,p). The freeze input ¢ can be removed from the Hamiltonian by Lemmaﬁ
Indeed, ¢ does not ever need to be introduced into differential games explicitly either,
because both winning regions are identical, based on [Mitchell et al. 2005]:

LEMMA 5.20 (SUPERFLUOUS FREEZING). Let X C S. Then

5m/:cf(r,y,z)&iy€Y&zEZ/\cE[O,l] (X) = 61’:f(z,y,z)&ly€Y&z€Z(X)
S/ =cf(x,y,2)88ycY &zE€ZNcE[0,1] (X) = gw/zf(x,y,z)&ler&zEZ(X)

PROOF. By Theorem[3.8] the equations imply each other, so the proof only considers
the first equation.
“C”: This inclusion follows from the soundness of this[DGRI proof step (Theorem|5.2):
VueY JyeY VzeZ FveZ, ce0,1])Vz (f(x,y, 2) = cf (x,u,v))
[2'=cf (2, u,v)8ueY &veZNce|01]|F — [2'=f(x,y, 2)&yeY &z€Z|F

. . . def def def
whose premise proves using the witnesses y = u,v = z,¢ = 1.
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“2”: This direction has been shown elsewhere [Mitchell et al. 2005, Corollary 5]. The
idea of the proof is as follows. The addition of ¢ does not affect the game behavior or
capabilities, because its only effect is a time-dilation, and time-invariant differential
equations 2’ = f(z,y, z) are invariant under time rescaling if time itself is unobserv-
able. Which it is, unless the differential game includes a clock ¢’ = 1, in which case that
clock will be frozen when ¢ < 1 as well, because its frozen counterpartis¢ =c. O

In a similar way, differential games restricted to evolution domains are expressible by
the dual freezing game that gives another freeze factor b to Demon with which he can
suspend the evolution should Angel ever try to leave the domain. A differential game
with evolution domain v has to always remain in ¢) and stop before leaving it. But only
Angel is in control of time. She might try to leave i) temporarily and sneak back before
Demon notices, which is forbidden. Adding the dual freeze factor b to the game gives
Demon the option of slowing the game down and challenging Angel to demonstrate it
still is in . Ensuring that Demon does not slow the game down just to prevent Angel’s
progress to victory is possible by exploiting hybrid games around it:

t=xo; (2 =bf(z,y,2),t' =18y € Y Ab € [0,1)&z € Z); 7; Nwog =1)?

This reduction assumes that the (vectorial) differential game 2’ = f(x,y, 2z) already
contains a deterministic clock 2 = 1 and adds a separate unfrozen absolute clock
t' = 1 starting from the same value after the assignment ¢:=zy. To slow the system
down, Demon needs to choose b < 1 on a set of non-zero measure (otherwise b =1 a.e.,
which has no effect). That will slow down the frozen z{, = b compared to the unfrozen
t' = 1, so that Demon fails his time-synchronicity dual test ?(z¢ = ¢)? and loses. Unless
he correctly points out that the system left the domain ¢, in which case Angel will lose
because she fails her test 7y first. Even though Demon has no influence on Angel’s
choice of time (, he can choose b = 0 to force the game into stasis any time. He just
needs to use that power wisely or else he will lose the game for false allegations. This
is the differential game analogue of the “there and back again game” for differential
equations with evolution domains [Platzer 2015]]. Differential hybrid games, thus, en-
able simpler differential games compared to incorporating state constraints directly
into a differential game by special-purpose techniques [Rapaport 1998].

5.6. Soundness of Differential Game Invariants

This completes the background results required for proving soundness of differential
game invariant rule The soundness proof proves the arithmetized postcondition
(Lemma|3.9), from an initial state that satisfies it, to be a time-independent viscosity
subsolution (Sect.[5.3) for all time horizons of the lower Isaacs PDE that char-
acterizes (Sect.[5.4) the lower value whose sign, in turn, characterizes (Sect.[5.2)
differential game winning regions (Sect.[3) even for premature stopping (Sect.[5.5).

THEOREM 5.21 (DIFFERENTIAL GAME INVARIANTS). Differential game invariants
are sound (proof rule [DGI).

PROOF. To prove soundness, assume the premise to be valid and assume the an-
tecedent of the conclusion true in a state ¢, written { |= F' as notation for ¢ € [F]:

FdyeYvzezplov?) (25)

x!

EEF (26)
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To make the proof easier to follow, the proof first considers the case where F' is an
atomic formula even if that follows from subsequent cases.
1) Consider the case where F is of the form F' = (g > 0) for a (smooth) term g. Then the

(valid) premise of rule specializes to Jy € YVz € Z (g > 0)’£,(z’y’z), which is

FdyeYVze Z (Vg™ > o) @7
When £ € S is a state, adopt the usual mathematical liberties of writing g(¢) for the
value [g]; of term g in state { € S to simplify notation substantially and keep it closer

to standard mathematical practice. Similarly for f(x,y, z), since it will be clear from
the context whether the term f(x,y, z) or its value is being referred to. If all the z,y, 2
are variables, f(x,y, z) is a term. If, instead, &, 7, ( are all (vectors of) reals, f(¢,7,()
refers to the corresponding value [f(z,y, 2)] 057 (for any state o since z, y, z are all free

variables). For variable x and values 7, (, the mlxed case f(z,n,() evaluates in state ¢
to the value f(&,1,¢) = [f(z,y, 2)] encs which will be used sparingly to avoid confusion.
Consider any time horizon 7" > 0 of Angel’s choosing. The case T' = 0 follows from

. The proof first shows that the time-invariant extension function g(t, z) = N g( sa
subsolution of the lower Isaacs equation with its unique solution V' (Theorem|5. 16,
which, by Theorem(5.14} implies g < V, because both functions coincide at time 7.

PART 1: g(t, ) def g(z) for smooth term g is a subsolution of lower Isaacs equation .

SUBPROOF: Since g is smooth, it, by Lemma(5.11} is a subsolution iff it satisfies the
subsolution inequality classically at every (n,¢):

Qt(mé)ﬂ?eaggggf(&y,z) - D,g(n, &) >0 (28)
0

>0

which holds since g is time-invariant so its time-derivative g; vanishes and by premise
, recalling that f(¢,y,2) - D,g(n,€) = [[V(g)f:/(m’y’z)]]E for all ¢,y, z by Lemma S0
that implies:

W e Y€ Zf(E,y.2) Dag(n.€) = [V(9)L "7 >0

By (28), g is a subsolution of 20), so g(¢) = g(n, &) < V(n,§) for all n, £ by Theorem[5.14]
which is applicable because V is bounded and uniformly continuous by Theorem|5.16}
and Lipschitz in z,¢ by Theorem[5.3] thus, Lipschitz in z uniformly in ¢ since t is
bounded by T so the maximum Lipschitz bound among ¢ € [0, 7] is finite. For applica-
bility of Theorem[5.14] note that g and g are bounded and Lipschitz by Def.[3.4] (using
the relevant domain from Lemmal3.10) and, thus, uniformly continuous by Sect.[2] ©

SoV(n,&) > g(&) > 0forall n and any initial state ¢ satisfying antecedent F' = (g > 0)
of the conclusion of[DGI] i.e. (26) which is g(¢) > 0. Hence, Casel 1] of Lemmal5.4]implies

VB € Syoz Iy € My g(x(T5€,y,B(y))) >

This shows that Demon can achieve g > 0 from any initial state & where g > 0 holds

provided that Angel decides to evolve the full duration 7', which she does not have to.
Since g(§) < V(t,€) is a time-independent lower bound for all times ¢ and all time

horizons T, Angel cannot achieve a lower value of g by stopping earlier either:

PART 2: If the payoff g is a time-independent subsolution of with g(¢) > 0, then
g € 6I’:f(a:,y,z)&§y€Y&z€Z([[g > O]]) (29)
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The case g(¢) > 0 is accordingly with [¢g > 0] instead.
SUBPROOF: Since g satisfies its own boundary condition, g is a subsolution of iff:
T +H ™ (t,z,p) > 0for all (r,p) € DVg(t,r) and all ¢, x
0
In particular, g is also a subsolution of the frozen lower Isaacs equation with Hamilto-
nian from Lemmal5.19] since 0 + 0 > 0 already holds:
7 +min(0, H (t,x,p)) > 0 for (7,p) € D g(t,z) and t, x
0
Thus, the lower value of the frozen game has lower bound g. By Lemma(5.18| the
frozen game does not need any premature stopping, so that Lemmal5.4] proves
£ e 5r’ch(a:,y,z)&§ly€Y&z€Z/\c€[0,1]([[g > 0]])
since T > 0 was arbitrary. The “C” inclusion of Lemmal5.20, which was proved directly
by differential game refinement Theorem[5.2] implies (29), concluding the subproof. [
An alternative to Part[2| proceeds directly without freezing: g also is a subsolution of
the Isaacs equation for infimum cost [Serea 2002]
min(v (¢, ) + h~ (z,v(t, x), Dyo(t, ), g(z) —v(t,z)) =0

_ _ [maxyey min.ez f(z,y,2)-p ifg(z) <r
h (I’T’p){oo ifg(z) >r

which the infimum cost value over time solves

b - i f i t; b b
v(n,§) gef | sup gr%l;lg(x( &y,8)))

because the choice of g(z) for v(t, z) satisfies
min(r + h~ (z,3(t, @), p), 9(z) — g(t,x)) > 0¥(r,p) € D" j(x)

Lemmal5.4| carries over to this infimum cost value v with an extra 3 < T for time, so
that 0 < g(&) < v(0,€) directly shows

g € 6x’:f(a:,y,z)&£y€Y&z€Z([[g > 0]])

Even if this alternative proof also works for time-dependent g, its downside is that
its PDE assumes a convex image of f under Y and Z to facilitate discontinuous games
[Serea 2002], which are not needed, because hybrid games cover discontinuous change.
2) Consider the case where F' is of the form F' = (¢ > 0) for a (smooth) term g. Then
the proof proceeds as in Case[l] since the premise of is still (27), because V(g > 0)
is equivalent to V(g > 0) by Def[4.1] In that case, the antecedent only implies
¢ |E g > 0 in the initial state &, thus, V(7,£) > g(&) > 0 for all . Yet, then Lemma
instead of Lemmal5.4] still implies the conclusion of rule DGI|by Part[2] since it shows:

V3 € Synzly e My g(2(T5€,y,8(y))) 2 0

3) Consider the case where F is atomically open. By congruence, it is enough to con-
sider the case where F' is normalized by (¢ < b) = (b — a > 0) so that it is built with

A,V from formulas of the form g; > 0 for polynomials g;. Let I def {i:gi(&) >0} #0 be
the set of all indices ¢ whose atomic formula g; > 0 is true in the initial state £. As a re-
placement for the previous Part[I] the subsequent Part[3|shows that the time-invariant

minimum g(¢, z) def min;er gi(x) of the involved continuously differentiable g; is still a
subsolution of the lower Isaacs equation even if g itself is not smooth.
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PART 3: g is a subsolution of the lower Isaacs equation (20).

Since § is time-invariant, validity of the conclusion of follows with Part[2] from
Part[3|like Case[l] followed from Part[I] using the observation that the combination of
subformulas of F' that were true initially will remain true using Lemmal[3.9] because
0 < g(n,&) < V(n,§) for all n and any initial state ¢ that satisfies the antecedent (26).

SUBPROOF OF PART[3} The proof idea from Part[I| no longer works, because g has no

differentials at points where the minimum switches from one term g¢; to another g;

unless their differentials happen to align. This proof uses superdifferentials instead.
The premise (25) in this case yields

FvedyeYvze Z N\ (g > 0L (30)
7

which, in mathematical metalanguage corresponds to
Vedy e YVz € Z f(x,y,2) - Dg;(x) > 0 for all ¢ (31)

because (g; > 0)'/(*¥*) is V(g;)!"**) > 0, which is f(z,y, 2)- Dgi(z) > 0 by Lemma
Proving that g is a subsolution of lower Isaacs PDE requires proving

. . _i'_,
Tt max min f(z,y,z)-p>0forall (1,p) € D"g(t,z) andallz € S (32)

Since g is time-invariant, it is differentiable by ¢ with derivative 0 everywhere, hence
the time component of its superdifferential coincides with the classical gradient 0 by
Lemma[5.11] Dropping time from the notation simplifies condition to:

maxmin f(z,y,2)-p>0forallpe DTg(z) and all z € S (33)
yeY zeZ

Rephrasing (33), it remains to show:
VeeSWe D ga)eYVe e Z f(z,y,2)-p>0
For any z, using the corresponding y € Y from (31), this is true for all z € Z and all i:
flx,y,2) - DV gi(x) > 0 thatis f(x,y,2) - Dg;(z) >0

because D*g;(z) = {Dg;(x)} by Lemmal5.11] According to Lemmal5.12 all convex gen-
erators of DTg, thus, satisfy that same property, which continues to hold for convex
combinations, since for any p,q € DVg(z) and X € [0, 1]:

f('rayaz) . (Ap+(1 _)‘)q) = )\f(xaywz) 'p+(1 _A)f(xaywz) cq>0
This proves (33), so that g is a subsolution of (20). B

4) The case where F is atomically closed proceeds as in Case[3] The premise of is
equivalent to the premise in Case[3] because V(a > b) and V(a > b) are equivalent by
Def.[4.1] The additional thought for closed sets is as for Case[2] Since g is a subsolution,
the same combination of subformulas of F' that were true initially will remain true.

5) The case where F' is any first-order formula (quantifier-free by quantifier elimina-
tion [Tarski 1951]) reduces to Case[d] By congruence, it is enough to consider the case
where F' is normalized by (e <b)=(b—a>0)and (a=b)=(a—b>0Ab—a > 0) etc.
so that it is built with A,V from formulas of the form g; > 0 or i; > 0. Replace every
strict inequality i; > 0 in F' that is true in the initial state { by a new weak inequality

g; > 0 with the term g; def hj — aj, which is still true in the initial state when choosing

the constant a; def hj(§) > 0. Replace every strict inequality h; > 0 that is not true

in the initial state £ by —1 > 0. The resulting formula G is closed, true in the initial
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state, and, if Demon has a strategy to achieve G, then, by monotonicity of winning re-
gions (rule Mlin Appendix[B), he also has a strategy to achieve the original F, because
F G — F. Cased] implies that Demon can achieve G, because the premise of that
Case assumes for G is implied by the premise for F' since V(h; > 0) is equivalent to
V(h; > 0) which is equivalent to V(h; — a; > 0) by Def.d.1)as V(a;) = 0 for constant
a;. Likewise V(-1 > 0) = (0 > 0) is trivially implied.

This concludes the proof of Theorem[5.21] demonstrating soundness for rule[DGIl O

5.7. Soundness of Differential Game Variants

Since rule settles for a conservative quantifier pattern, the soundness proof for
rule can be adapted more easily to prove soundness of rule [ DGVl as well.

THEOREM 5.22 (DIFFERENTIAL GAME VARIANTS). Differential game variants are
sound (proof rule IDGV).

PROOF. Let £ =g <0, ie. g(¢§) < 0, otherwise Angel wins by choosing T = 0.
The proof follows the same principle as the proof of Theorem by using the du-
ality Theorem|3.8| since the same game is played in [2' = f(z,y,2)&y € Y&z € Z] and
(' = f(z,y,2)8y € Y&z € Z) with the same partition of control advantage and infor-
mation just from another player’s perspective. To facilitate proof reuse, rule DGV] uses
a conservative information pattern, so that the duality allows to swap player controls
and consider [z = f(z,y,2)& 2 € Z&y € Y](g > 0). This formula cannot be expected to
be true, since the initial state does not need to satisfy g > 0, for Angel would stop right
away then. Yet, the study of its value will still prove to be informative and, in partic-
ular, reuse the proof of Theorem[5.21] The only, but critical, change is that does
not assume the postcondition to hold in the beginning and, instead, requires a proof
that it will finally be reached. This leads to the following variation on the choice of the
subsolution for the comparison theorem. Let ¢ € R be the value whose existence the

premise shows. For postcondition formula g > 0, consider g(¢, z) & g(x)+5(T —t). This

g is smooth, so, by Lemmal[5.11] a subsolution of the lower Isaacs equation iff:
gi(t,x) + maxmin f(x,y, 2) - D,g(t,x) >0 (34)
~—— YEY z€Z

NI

>e

which again holds by premise using Lemmal4.2]if its assumption g(z) < 0 holds. The
left-hand side of is > ¢ — 5 > 0 on the closed set [g < 0], and is a continuous func-
tion, so it continues to be >0 on sufficiently small neighborhoods of [¢ < 0]. Thus, the
proof in Theorem|5.21] continues to work when restricting the domain to a sufficiently
small open neighborhood i/ of [¢g < 0]. Since g(n, &) < V(n, &) follows from Theorem(5.14
as in Theorem[5.21] Lemmal5.5|implies the conclusion of if 0 < V(0,¢), which wi
happen for large enough time horizons 7" according to the definition of g. In particular,
0 < g(n,&) < V(n &) when T is sufficiently large, e.g. T > —%g(ﬁ) > 0, which is under
Angel’s control. The existence of a (unique) solution of such a duration 7" follows from
Perron’s existence theorem for Hamilton-Jacobi PDEs [Barles 2013, Thm. 7.1].

For this time horizon 7', by Lemmal5.4] player Demon of the flipped game, who plays
for Angel’s controls of the original differential game, will ultimately be in a state where
g > 0, if he just happens to be lucky that such a long time is played and the game does
not stop prematurely, so ( = T is chosen, in which case characterizes the lower
value (otherwise the frozen Isaacs Hamiltonian (24) would apply so that stops
holding). For the original differential game, in which Angel is in charge of controlling
the time, this means that she can win g > 0 by just playing long enough, which is under
her control, and by limiting herself to ( = T, which is her choice, too. Since 0 < g(n, ) <
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V(n,§) for all n for this 7', and g(z(s; €, y, B(y))) is continuous in s (Lemma[3.5), Angel
will win into [g > 0] before leaving the open neighborhood ¢/ of [¢ < 0]. O

It is of apparent significance for the soundness of rule that the lower bound &
holds for all x, not just that there is an ¢ for every x. Otherwise, the progress might
converge (long) before g > 0 is reached. It is also possible to prove soundness of
based on the soundness proof of rule That works by replacing the Hamiltonian
in by a uniformly continuous continuation J (which exists by Tietze [Walter 1995,
2.19]) to the full space, which agrees with the Hamiltonian from on the open neigh-
borhood U/ of [¢g < 0] and shares the same lower bound ¢, but globally. The proof then
uses soundness of the (-) dual of rule DGRl to show that the original game has a win-
ning strategy since the game corresponding to J has a winning strategy for g > 0. The
only additional thought is that it is enough to restrict the premise of to the set
of x that can occur during the game starting from &, which is where the values of the
original game and the one for the Hamiltonian J coincide by Tietze [Walter 1995, 2.19].

6. DIFFERENTIAL GAME EMBEDDINGS

The previous sections have immersed differential games within hybrid games to form
differential hybrid games and studied how their properties can be proved. This is a use-
ful approach in practice. The alternative is to understand how differential games re-
late to (non-differential) hybrid games from a theoretical perspective. The logic dGLyzg
from [Platzer 2015] is differential game logic of hybrid games, which is the fragment
of dGL that has no differential games, except differential equations ' = f(z). The logic
dGLpg is differential game logic of differential games in which all games are of the form
v = f(x,y,2)8y € Y&z € Z. For emphasis, dGLpyg is differential game logic dGL for
full differential hybrid games in which all operators of Def.[3.1] are allowed. Tracing in
dGL the characterizations developed here only for open or closed postconditions gives:

THEOREM 6.1 (DIFFERENTIAL GAME CHARACTERIZATION). Differential games
are hybrid games, i.e. dGLpug and dGLyg are equally expressive.@ dGLug = dGLpuG.

PROOF. This proof uses the encoding results in Appendix[A] The nontrivial direc-
tion dGLppg < dGLyg can be shown by a careful analysis of the constructions involved
in characterizing differential games. The original definition of differential games and
their behavior in terms of nonanticipative strategies and measurable functions of con-
trol input does not lead to a characterization without facing substantial challenges of
having to characterize higher-order quantification in large-cardinality function classes.
The indirect characterization of a differential game in terms of its Isaacs PDEs proves
to be more useful. Using expressiveness results for the base logic [Platzer 2012a}
Platzer 2015], it is enough to consider the new differential game cases

[¢' = f(x,y,2)8y € Y&z € Z|F (35)

and (2’ = f(x,y,2)8y € Y&z € Z)F. By Theorem it is enough to consider just .
1) Consider the case where F is atomically open. By Lemmal5.20] is equivalent to
its frozen analogonﬁ [/ = cf(z,y,2)8y € Y&z € Z Ac € [0,1]]F. By Lemma the
latter needs no premature stopping and is true in a state ¢ iff V(0,£) > 0 for all T >

0, using the realization g &f R as payoff (using Lemma. By Lemma \%4
satisfies the lower Isaacs equation with the Hamiltonian (24). Thus, is true

12Logic B is at least as expressive as A, written A < B if every formula of A can be expressed by an
equivalent formula of B. Further, A = Bif A < Band B < A. And A < Bif A < Bbutnot B < A.

13As in Part of Theorem Theorem can alternatively be proved using the (more involved) Isaacs
PDEs for infimum cost [[Serea 2002] instead of the frozen differential game from Lemma
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in £ iff V(0,€) > 0 for all T > 0. The quantification over time horizon T is definable
in dGL. So is the condition whether the state characterized by a variable vector x
satisfies V(0,z) > 0 provided that V and its evaluation can be characterized, which
is what Corollary[A.4]in Appendix[A] shows since V is continuous by Theorem[5.3] By
Theorem|5.16] V' is the unique bounded, uniformly continuous viscosity solution of the
lower Isaacs equation with the Hamiltonian from Lemmal5.19] Boundedness
and uniform continuity are characterizable with first-order logic over the reals (see
Sect.[2), since evaluation of V is by Corollary[A.4] The terminal condition, V (T, z) =
g(z) for all z, is characterizable by quantification and evaluation by Corollary[A.4] The
fact that V solves the (by Lemmal5.19|frozen) Isaacs equation

Vi + maxmin min cf(z,y,z)- DV =0
y€Y 2€Z c€[0,1]

can be characterized by the definable condition

in mi ,2)-p >0 Y(r,p) e DV (t,
T+ryrlea;<rzrggcrer%5f11]6f(x,y z)-p=0 ¥7,p) (t,x)

provided quantification over all superdifferentials (,p) is definable. Once that suc-
ceeds, the argument is the same to characterize that V' is a viscosity supersolution.

Dropping the time coordinates ¢, 7 from the notation for simplicity, Def.[5.10implies
that p € D"V (z) iff

s Y0 = V@) = p- (v~ 2)

<0
y—=x ly — x|

which is characterizable as follows. Abbreviating (V(y) — V(z) —p- (y — z))/|ly — z| by
h(y), which is definable, the above can be rephrased equivalently using:

lim sup h(y) = iggsup{h(y) 0<|y—z| <e}

y—z
Whether, for an £ > 0, the inner sup has value s is definable as a least upper bound:
VyO<|y—z|<e—=>s>h(y) AVb(Vy(0<|y—z|<e—=b>h(y) = s<b)

A similar first-order formula characterizes the value of the outer inf in terms of this s.

As viscosity supersolution conditions are definable correspondingly, the set of states
where dGL formula is true is characterizable in dGL without differential games.
2) The case of closed formulas F is accordingly, using the criterion Case[3] from
Lemmal5.4] or Lemmal5.5| instead. Note that the elegant layered approach for hybrid
systems logic dZ, which is based on lifting complete approaches for open formulas to
closed and then to arbitrary formulas [Platzer 2012all, does not work for dGZ, because
the Barcan axiom of dZ that it rests on is not sound for dG [Platzer 2015]. O

THEOREM 6.2 (EXPRESSIVE POWER). Differential games are strictly less expres-
sive than hybrid games, i.e. dGLpq is less expressive than dGLyg: dGLpg < dGLyg.

PROOF. The proof of Theorem|6.1] does not rely on special features of hybrid games
but continues to work when characterizing differential games in dZ, the corresponding
logic of hybrid systems [Platzer 2012al]. The result, thus, follows since [Platzer 2015,
Thm. 5.3] shows that hybrid systems are strictly less expressive than hybrid games. 0O

This is surprising, because the contrary holds for hybrid systems. Hybrid systems
are equivalently reducible to differential equations [Platzer 2012a]l. Theorem|6.2|shows
that this situation reverses for differential games versus hybrid games.
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7. RELATED WORK

A general overview of the long history of differential games since their conception
[Isaacs 1967; [Friedman 1971 and breakthroughs of their viscosity understanding
[[Souganidis 1985; |[Barron et al. 1984; Evans and Souganidis 1984] is discussed in the
literature [Bardi et al. 1999]. The related work discussion here focuses on differen-
tial games as they relate to hybrid games. Hybrid games themselves [Nerode et al.
1996; Henzinger et al. 1999; Tomlin et al. 2000; Dharmatti and Ramaswamy 2006;
Bouyer et al. 2010; Vladimerou et al. 2011]] are discussed elsewhere [Platzer 2015]].
See [Mitchell et al. 2005] for a helpful overview of hybrid systems verification and how
Lagrangian verification relates to Eulerian verification. The relationship of differen-
tial games to (robust) control theory [Blanchini and Milano 2008], which is interesting
yet limited to piecewise continuous controls or linearity assumptions and, thus, does
not give a sound approach for differential games with measurable inputs, is elaborated
in the literature [Bardi et al. 1999; Mitchell et al. 2005; (Cardaliaguet et al. 2007].
Previous techniques for differential games revolve around numerically solving the
PDEs that they induce [Bardi et al. 1999; Isaacs 1967;|Mitchell et al. 2005], correspond-
ing viability theory formulations [Cardaliaguet et al. 2007], or classically by passing to
the limit when considering lower and upper time-discrete approximations with strate-
gies changing at finitely many points [Friedman 1971]. The latter cannot be imple-
mented and its theoretical understanding has been revolutionized by the invention
of viscosity solutions [[Crandall and Lions 1983; Evans and Souganidis 1984; Barles
2013|]. The former are interesting but do not yield proofs, because PDEs are highly
nontrivial to solve. A number of subtle soundness issues have been reported [Mitchell
et al. 2005] for different shapes of the respective sets. These numerical approximation
schemes cannot provide correctness guarantees, because their error is unbounded. Un-
like results in dG£, numerical PDE solutions are also only for a fixed time horizon T'.
Viability theory provides geometric notions for differential games with a robustness
margin [Aubin 1991; Kohn et al. 1995; Cardaliaguet et al. 2007; Bayen et al. 2007]]. Its
algorithms converge to the correct answer only in the limit [Cardaliaguet et al. 1999]|.
They give internally consistent answers on the discretization grid, but errors off the
grid and outside the reachable set are still unbounded, and inherent discontinuities
of value functions from viability theory complicate the numerics [Mitchell et al. 2005]|.
Viability has been considered for hybrid systems [Gao et al. 2007]] with affine dynamics
and convexity assumptions and only if no input influences the discrete state, which
goes against the spirit of hybridness. To simplify the problem, continuous controls
or strategies [Saint-Pierre 2004] or convex control images with affine dynamics are
assumed [Cardaliaguet 1996]|; see [Cardaliaguet et al. 2007; Bardi et al. 1999].
Special-purpose cases for differential games where players play some limited form
of hybrid input have been considered [Dharmatti and Ramaswamy 2006|. There is an
argument to be made in favor of more modular designs such as dGZ, where discrete
and continuous games are integrated side-by-side as first-class citizens in a modular
programming language, as opposed to all intermingled in one differential game. The
fact that systems become easier when understood as combinations of simpler elements
has already been equally paramount for the success of hybrid systems [Platzer 2012b].
Differential game logic for hybrid games without differential games has been intro-
duced along with an axiomatization and theoretical analysis in prior work [Platzer
2015]l. Here, differential games are integrated modularly into hybrid games. The focus
is on the characterization, study, and proof principles of differential games, leveraging
compositionality principles of logic to cover differential hybrid games. This leads to the
first sound proof approach for differential games and combinations with hybrid games.
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The resulting differential hybrid games are the only games that support both discrete
and continuous state change with adversarial dynamical interaction during both.

8. CONCLUSIONS AND FUTURE WORK
Differential game invariants, variants, and refinements are simple and sound induc-
tive proof techniques for differential games, which embed compositionally into differ-
ential hybrid games. The primary challenge was their soundness proof, which uses
superdifferentials to show that their arithmetizations are viscosity subsolutions of the
Isaacs PDE characterizing the lower value whose sign characterizes winning regions.
Induction can be defined in different ways for differential equations such as checking
near boundaries with sufficient care to prevent soundness issues. Similar flexibility is
expected for differential games, for which differential game invariants are the first
induction principle. In passing, Theorem[5.21] showed soundness of superdifferentials
for differential invariants, which will be investigated in future work. Recent advances
in generating differential invariants should generalize to differential game invariants.
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A. ENCODING PROOFS FOR EMBEDDING

The hybrid systems logic dZ [Platzer 2012a] is the sublogic of dGL that has differen-
tial equations but neither duality ¢ nor differential games. By A” denote the set of
functions B — A. The proof of Theorem[6.1]is based on the following encoding results.

LEMMA A.1 (R-GODEL ENCODING [[PLATZER 2008|, LEM. 41). The logical relation
at(Z,n,j,z), which holds iff Z is a real number that represents a Godel encoding of a
sequence of n real numbers with real value z at position j (for 1 < j < m), is definable

in dC. For a formula ¢(z) abbreviate 3z (at(Z,n, j, z) A ¢(2)) by (b(Z](-")).

COROLLARY A.2 (INFINITE R-GODEL ENCODING). The bijection R = RY is char-
acterizable in dC by a formula at(Z,, j, z), which holds iff Z is a real number that
represents a Godel encoding of an w-infinite sequence of real numbers with real value z

at position j. For a formula ¢(z), abbreviate 3z (at(Z, oo, j, z) A $(z)) by qS(ZJ(oo)).
PROOF. at(Z, o0, j, z) is definable by repeated unpairing using Lemma
(G=7—-12:=2P)V)j=0nz2=2DP)

The use of an abbreviation formula like Z2(2) inside a modality is definable (most easily
in rich-test d£). O
COROLLARY A.3. The bijections N = Q and R == R? are characterizable in d_.

PROOF. dL can define the formula rat(n,p, ¢), which holds iff g is the n-th rational
number (in some arbitrary but fixed definable order):

rat(n,p, q) <—>p:n(12)/\q:n52)/\q>0 O

COROLLARY A.4. The bijection R = C(R,R) from reals to the continuous functions
on the reals is characterizable in d_.
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PROOF. Since continuous functions are uniquely defined by their values on the ra-
tionals Q, Corollary[A.3|shows that dC can characterize the bijection by

V5>035>0V§ :QVn:N (rat(n,p, q) Nz — ‘g| <8 |z—F™| < E))

Observe that the enumeration of % from Corollary enumerates identical fractions

with different denominators repeatedly, which would allow for the definition of in-
consistent F' that give different values at % and g—g. This is easily overcome, e.g., by

skipping fractions that cancel, which can be checked by divisibility or Euclid’s gcd al-
gorithm, which are both definable with programs in dZ. O

B. NON-DIFFERENTIAL HYBRID GAME AXIOMATIZATION

For reference, Fig.[5| shows a sound and complete axiomatization from prior work
[Platzer 2015]] for the case of differential game logic for hybrid games with differen-
tial equations but without differential games. The axiomatization is designed on top
of the first-order Hilbert calculus (modus ponens, uniform substitution, and Bernays’
V-generalization) with all instances of valid formulas of first-order logic as axioms, in-
cluding first-order real arithmetic. The only change of Fig.[5| compared to prior work
[Platzer 2015] is the use of dualization to convert (-) axioms into [-] axioms. This is a
cosmetic change to make it easier for the reader to appreciate how differential game
invariants (proof rule integrate seamlessly into the proof calculus for the other
operators of differential hybrid games.

() ()¢ < —[a]-¢
(=] [z:=0]¢(z) <> ¢(0)
[ [&" = f(2)]¢ < Vt=0 [z :=y(t)]¢ W'(t) = f(y)
(7 [M]¢ < (¥ — ¢)
U] [aU Bl <« [a]o A [Blé
(] [a; 8] < [a][B]e
(] ¢ A la]la*]¢ « [a*]e
"] [a]¢ > =[a]=¢

o=
[a]é — [a]y
¥ — [y

¥ = o]y

Fig. 5. Differential game logic axiomatization for hybrid games without differential games

C. PROOF OF ISAACS EQUATIONS

For the sake of completeness, this section shows a proof of Theorem|5.16|that is simpli-
fied compared to its original version [Evans and Souganidis 1984]]. The proof of Theo-
rem[5.16] uses two lemmas.
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LEMMA C.1. Let v € C((0,T) x R"™). The upper value U of satisfies for any
0<n<n+o<T:

n+o
U)o = sw int ([ Vp(s)dstUlnioatnia)-vlrto,a(r+0))

€Sz _,y €Mz

where x(¢) = x((; &, az), 2) is the response of (2) for a(z) and z and

Vo(s) L vi(s,2(s) + f(s,2(s),a(2)(s), 2(5)) - Dyv(s, a(s))

PROOF. The result follows from the dynamic programming optimality condition
with step size o. Recall

Um,§)= sup inf U(n+o,z(n+o0)) (141)

a€Sy ,y 2€EMz

using the fundamental theorem of calculus [Walter 1995, Thm. 9.23] (since v is differ-
entiable on the open interval (1,7 + o) and continuous on the closed interval [n,n + o]):

T du(t, z(t nto
s+ aatnra)—vne = [ = [T s o
7 n
LEMMA C.2 ([EVANS AND SOUGANIDIS 1984], LEM. 4.3]). Let v € C*((0,T) x R™).
ve(n, &) + H* (0, & Dv(n,€)) < =0 <0 (36)
n+o o
implies for all sufficiently small c 32 € Mz VYo € S;_,y / Vv(s)ds < 5
n
vi(n, &) + H* (0, &, Dv(n,€)) > 6 >0 (37)
nto oL
implies for all sufficiently small o 3o € Sz _.yvVz € My / Vv(s)ds > 5

n
PROOF. To simplify the assumptions, abbreviate

Alt,2,y,2) Loyt 2) + f(t, 2y, 2) - Dyo(t,z)

First prove the first inequality. By the definition of H T, is

i A < -
min ma (n:6:y,2) <=0 <0

which implies for some z* € Z that
A 1<-0<0
max A(n, &,y,2") < —6 <
Since A(t, z,y, ) is (uniformly) continuous
0
A < —=
max A(s,a(s), 9. 27) <~
for s € [n,n + o] with a sufficiently small o when z(-) is the response of (2) for any vy, 2

with initial condition x(n) = £. Consequently, for the constant control z(-) def z*, any
a € Sy_,y gives
0

A(s,z(s), a(2)(s), 2(s)) < -3
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Now, prove the second inequality (37), which is
minma}z(A(n,f,y,z) >0>0

2€Z ye

which implies that, for each z € Z, there is a y € Y such that

A(n,&y,2) >0
Since A(t, z,y, z) is (uniformly) continuous

30

for all ( € Z in an open ball around z. Since this holds for all z € Z and Z is compact,
there is a finite open covering of Z with open balls B; within which holds for all
¢ € BN Z. Pick a function ¢ : Z — Y such that ¢(z) is the center of the closest ball B; to
z (breaking ties arbitrarily). Then, for all z € Z:
36
A(nv 6) C(Z), Z) Z Z

Since A(t, z,y, z) is (uniformly) continuous,

(39)

N D

A(n,§,c(2),2) >

for s € [n,n + o] with a sufficiently small ¢ when =

—~

-) is the response of (2) for any y, 2

with initial condition z(n) = £. Construct o € Sz_,y for z € My as a(z)(s) &f c(z(s))
for all s. Then implies

A(s, z(s), a(z)(s), 2(s)) =
for all s € [n,n + o], which implies the desired inequality by integration from 7 to
n+o. O

PROOF OF THEOREM[5.16l U can be shown to be the viscosity solution of the up-
per Isaacs equation. The proof for V is dual. First, U satisfies the terminal condition
U(T,€) = g(x(T)) = g(§) for all £ € R™.

Second, U is shown to be a subsolution of (21I), that is

T+H"(1,6p) >0 Wr,p)eDTU®,E)
By Lemma(5.11} this is equivalent to showing
vi(n, &) + H*(n,&, Do(n,€)) > 0 (40)

for allv € C1((0,T) xR™) that make U —v attain a local maximum at (1, ¢) € (0,7) xR",
ie.

[NVRESS

Umn,§) —v(m,§) 2Um+o,z(n+0)) —vn+o,2(n+o0)) (41)

for sufficiently small o and z(-) solving (2) with initial condition z(n) = £. Otherwise,
if were not the case, then there would be a 6 such that

vi(n, &) + H* (n,€, Do(n,€)) < -0 <0 (36})
By Lemma|C.1] impliesforany 0 <n<n+o<T
n+o
su inf / Viv(s)ds >0 42)
. o ro(s)
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By LemmalC.2] implies for all sufficiently small o & € Mz Vo € Sz_y

n+o
/ Vv(s)ds < 0
n 2

This choice of z (that is even common for all «) implies in particular
nto o
sup  inf / Vivu(s)ds < —— (43)
€Sy v zEMz n 2

Equation contradicts and, thus, refutes and proves (40).
Third, U is shown to be a supersolution of (21), that is

T+ HY(n,,p) <0 W(r,p) € D"U(n,£)
By Lemmal(5.11} this is equivalent to showing
vi(n, &) + H* (0, &, Do(n,€)) <0 (44)

for allv € C1((0,T) x R") that make U — v attain a local minimum at (1, &) € (0,7) xR™,
ie.

Un,§) —v(n,&) <Um+o,2(n+0)) —vn+o,2(n+0)) (45)

for sufficiently small o and z(-) solving (2) with initial condition z(n) = £. Otherwise,
if (44) were not the case, then there would be a 6 such that

ve(n,§) + H* (1€, Dv(n,£) 2 0 >0 (BT
By LemmalC.1] implies forany 0 <n<n+oc<T

nto
su inf / Viv(s)ds <0 (46)
e L) Fo(s)
By LemmalC.2] implies for all sufficiently small 0 3o € Sz_,yVz € My
n+o
/ Vu(s)ds > il
n
This choice of o demonstrates the lower bound
nte of
sup  inf Vu(s)ds > - (47)

a€Sz_,y #E€Mz n

Equation contradicts and, thus, refutes and proves (44). O

REFERENCES

Jean-Pierre Aubin. 1991. Differential games: a viability approach. SIAM J. Control Optim. 28, 6 (1991),
1294-1320. DOI : http://dx.doi.org/10.1137/0328069

Jean-Pierre Aubin and Héléne Frankowska. 1990. Set-Valued Analysis. Birkhéduser.
DOI:http://dx.doi.org/10.1007/978-0-8176-4848-0

Martin Bardi, T. E. S. Raghavan, and T. Parthasarathy (Eds.). 1999. Stochastic and Differential Games:
Theory and Numerical Methods. Ann. Int. Soc. Dyn. Game., Vol. 4. Springer.

Guy Barles. 2013. An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton—
Jacobi Equations and Applications. In Hamilton-Jacobi Equations: Approximations, Numeri-
cal Analysis and Applications. Lecture Notes in Mathematics, Vol. 2074. Springer, 49-109.
DOI: http://dx.doi.org/10.1007/978-3-642-36433-4_2

Emmanuel Nicholas Barron, Lawrence Craig Evans, and Robert Jensen. 1984. Viscosity solutions of Isaacs’
equations and differential games with Lipschitz controls. Journal of Differential Equations 53, 2 (1984),
213 — 233. DOI :/http://dx.doi.org/10.1016/0022-0396(84)90040-8

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 19, Publication date: July 2017.


http://dx.doi.org/10.1137/0328069
http://dx.doi.org/10.1007/978-0-8176-4848-0
http://dx.doi.org/10.1007/978-3-642-36433-4_2
http://dx.doi.org/10.1016/0022-0396(84)90040-8

19:42 A. Platzer

Saugata Basu, Richard Pollack, and Marie-Francoise Roy. 2006. Algorithms in Real Algebraic Geometry (2nd
ed.). Springer. DOI : http://dx.doi.org/10.1007/3-540-33099-2

Alexandre M. Bayen, Christian Claudel, and Patrick Saint-Pierre. 2007. Viability-Based Computations of
Solutions to the Hamilton-Jacobi-Bellman Equation. In HSCC (LNCS), Alberto Bemporad, Antonio Bic-
chi, and Giorgio C. Buttazzo (Eds.), Vol. 4416. Springer, 645-649.

Franco Blanchini and Stefano Milano. 2008. Set-Theoretic Methods in Control. Birkh&user.

Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. 1998. Real Algebraic Geometry. Ergeb. Math. Gren-
zgeb., Vol. 36. Springer.

Nicolas Bourbaki. 1989. General Topology: Chapters 1-4. Elements of mathematics, Vol. 3i.

Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. 2010. O-Minimal Hybrid Reachability Games. Log.
Meth. Comput. Sci. 6, 1 (2010). DOI :http:/dx.doi.org/10.2168/LMCS-6(1:1)2010

Alberto Bressan. 2011. Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems.
Lecture notes. (2011).

Pierre Cardaliaguet. 1996. A Differential Game with Two Players and One Target. SIAM J. Control Optim.
34, 4 (July 1996), 1441-1460. DOI : http://dx.doi.org/10.1137/S036301299427223X

Pierre Cardaliaguet, Marc Quincampoix, and Patrick Saint-Pierre. 1999. Set-Valued Numerical Anal-
ysis for Optimal Control and Differential Games. Birkhduser Boston, Boston, MA, 177-247.
DOI : http://dx.doi.org/10.1007/978-1-4612-1592-9_4

Pierre Cardaliaguet, Marc Quincampoix, and Patrick Saint-Pierre. 2007. Differential Games Through Vi-
ability Theory: Old and Recent Results. In Advances in Dynamic Game Theory, Steffen Jgrgensen,
Marc Quincampoix, and Thomas L. Vincent (Eds.). Ann. Int. Soc. Dyn. Game., Vol. 9. Birkhduser, 3—
35. DOI : http://dx.doi.org/10.1007/978-0-8176-4553-3_1

Michael G. Crandall, Lawrence C. Evans, and Pierre-Louis Lions. 1984. Some properties of vis-
cosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282, 2 (1984), 487-502.
DOI: http://dx.doi.org/10.2307/1999247

Michael G. Crandall and Pierre-Louis Lions. 1983. Viscosity solutions of Hamilton-Jacobi equations. Trans.
Amer. Math. Soc. 277, 1 (1983), 1-42. DOI : http://dx.doi.org/10.2307/1999343

S. Dharmatti and M. Ramaswamy. 2006. Zero-Sum Differential Games Involving Hybrid Controls. J. Opti-
miz. Theory App. 128, 1 (2006), 75-102. DOI : http://dx.doi.org/10.1007/s10957-005-7558-x

Robert J. Elliott and Nigel J. Kalton. 1974. Cauchy problems for certain Isaacs-Bellman
equations and games of survival. Trans. Amer  Math. Soc. 198 (1974), 45-72.
DOI:http://dx.doi.org/10.1090/S0002-9947-1974-0347383-8

Lawrence Craig Evans. 2010. Partial Differential Equations (2nd ed.). Graduate Studies in Mathematics,
Vol. 19. AMS.

Lawrence Craig Evans and Panagiotis E. Souganidis. 1984. Differential Games and Representation Formu-
las for Solutions of Hamilton-Jacobi-Isaacs Equations. Indiana Univ. Math. J. 33, 5 (1984), 773-797.
DOI:http://dx.doi.org/10.1512/ium;j.1984.33.33040

Avner Friedman. 1971. Differential Games. John Wiley.

Yan Gao, dJohn Lygeros, and Marc Quincampoix. 2007. On the Reachability Problem
for Uncertain Hybrid Systems. IEEE T. Automat. Contr. 52, 9 (2007), 1572-1586.
DOI : http://dx.doi.org/10.1109/TAC.2007.904449

Lars Griine and Oana Silvia Serea. 2011. Differential Games and Zubov’s Method. SIAM oJ. Control Optim.
49, 6 (2011), 2349-2377. DOI : http://dx.doi.org/10.1137/100787829

Otomar Hajek. 1975. Pursuit Games: An Introduction to the Theory and Applications of Differential Games
of Pursuit and Evasion. Academic Press. DOI : http://dx.doi.org/10.1016/S0076-5392(08)60212-X

Thomas A. Henzinger. 1996. The Theory of Hybrid Automata.. In LICS. IEEE Computer Society, Los Alami-
tos, 278-292. DOI : http://dx.doi.org/10.1109/LICS.1996.561342

Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. 1999. Rectangular Hybrid Games.
In CONCUR (LNCS), Jos C. M. Baeten and Sjouke Mauw (Eds.), Vol. 1664. Springer, 320-335.
DOI:http://dx.doi.org/10.1007/3-540-48320-9_23

Rufus Philip Isaacs. 1967. Differential Games. John Wiley.

Wolf Kohn, Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. 1995. Viability in Hybrid Systems.
Theor. Comput. Sci. 138, 1 (1995), 141-168. DOI :/http://dx.doi.org/10.1016/0304-3975(94)00150-H

N.N. Krasovskii and A.I. Subbotin. 1988. Game-Theoretical Control Problems. Springer.

David Marker. 2002. Model Theory: An Introduction. Springer, New York.
DOI:http://dx.doi.org/10.1007/b98860

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 19, Publication date: July 2017.


http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.2168/LMCS-6(1:1)2010
http://dx.doi.org/10.1137/S036301299427223X
http://dx.doi.org/10.1007/978-1-4612-1592-9_4
http://dx.doi.org/10.1007/978-0-8176-4553-3_1
http://dx.doi.org/10.2307/1999247
http://dx.doi.org/10.2307/1999343
http://dx.doi.org/10.1007/s10957-005-7558-x
http://dx.doi.org/10.1090/S0002-9947-1974-0347383-8
http://dx.doi.org/10.1512/iumj.1984.33.33040
http://dx.doi.org/10.1109/TAC.2007.904449
http://dx.doi.org/10.1137/100787829
http://dx.doi.org/10.1016/S0076-5392(08)60212-X
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1016/0304-3975(94)00150-H
http://dx.doi.org/10.1007/b98860

Differential Hybrid Games 19:43

Tan Mitchell, Alexandre M. Bayen, and Claire Tomlin. 2005. A time-dependent Hamilton-Jacobi formula-
tion of reachable sets for continuous dynamic games. IEEE T. Automat. Contr. 50, 7 (2005), 947-957.
DOI:http://dx.do1.org/10.1109/TAC.2005.851439

Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. 1996. Hybrid System Games: Ex-
traction of Control Automata with Small Topologies. In Hybrid Systems (LNCS), Panos .
Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry (Eds.), Vol. 1273. Springer, 248-293.
DOI:http://dx.doi.org/10.1007/BFb0031565

Leon A. Petrosjan. 1993. Differential Games of Pursuit. World Scientific.

André Platzer. 2008. Differential Dynamic Logic for Hybrid Systems. J. Autom. Reas. 41, 2 (2008), 143-189.
DOI:http://dx.doi.org/10.1007/s10817-008-9103-8

André Platzer. 2010. Differential-Algebraic Dynamic Logic for Differential-Algebraic Programs. J. Log. Com-
put. 20, 1 (2010), 309-352. DOI : http://dx.doi.org/10.1093/logcom/exn070

André Platzer. 2012a. The Complete Proof Theory of Hybrid Systems. In LICS. IEEE, 541-550.
DOI:http://dx.doi.org/10.1109/LICS.2012.64

André  Platzer. 2012b. Logics of Dynamical Systems. In LICS. IEEE, 13-24.
DOI:http://dx.doi.org/10.1109/LICS.2012.13

André Platzer. 2012¢. The Structure of Differential Invariants and Differential Cut Elimination. Log. Meth.
Comput. Sci. 8, 4 (2012), 1-38. DOI :http://dx.doi.org/10.2168/LMCS-8(4:16)2012

André Platzer. 2014. Differential Hybrid Games. Technical Report (CMU-CS-14-102. School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA.

André Platzer. 2015. Differential Game Logic. ACM Trans. Comput. Log. 17, 1 (2015), 1:1-1:51.
DOI:http://dx.doi.org/10.1145/2817824

André Platzer and Edmund M. Clarke. 2009. Computing Differential Invariants of Hybrid Systems as Fixed-
points. Form. Methods Syst. Des. 35, 1 (2009), 98—120. DOI : http://dx.doi.org/10.1007/s10703-009-0079-8
Special issue for selected papers from CAV’08.

Marc Quincampoix. 2011. Tutorial on Differential Games. SADCO Summer School. (2011).

Alain E. Rapaport. 1998. Characterization of Barriers of Differential Games. J. Optim. Theory Appl. 97, 1
(1998), 151-179. DOI : http://dx.doi.org/10.1023/A:1022631318424

Dusan Repovs and Pavel Vladimirovic Semenov. 1998. Continuous Selections of Multivalued Mappings.
Springer. DOI : http://dx.doi.org/10.1007/978-94-017-1162-3

Patrick Saint-Pierre. 2004. Viable Capture Basin for Studying Differential and Hybrid Games:
Application to Finance. International Game Theory Review 06, 01 (2004), 109-136.
DOI:http:/dx.doi.org/10.1142/S0219198904000101

Oana Silvia Serea. 2002. Discontinuous differential games and control systems with supremum cost. /.
Math. Anal. Appl. 270, 2 (2002), 519 — 542. DOI : http://dx.doi.org/10.1016/S0022-247X(02)00087-2

Panagiotis E Souganidis. 1985. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations.
J. Differ. Equations 59, 1 (1985), 1 — 43. DOI :http://dx.doi.org/10.1016/0022-0396(85)90136-6

Alfred Tarski. 1951. A Decision Method for Elementary Algebra and Geometry (2nd ed.). University of Cali-
fornia Press, Berkeley.

Claire J. Tomlin, John Lygeros, and Shankar Sastry. 2000. A Game Theoretic Approach to Controller Design
for Hybrid Systems. Proc. IEEE 88, 7 (2000), 949-970. DOI : http://dx.doi.org/10.1109/5.871303

Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan, and Geir E. Dullerud. 2011.
Specifications for decidable hybrid games. Theor. Comput. Sci. 412, 48 (2011), 6770-6785.
DOI:http://dx.doi.org/10.1016/j.tcs.2011.08.036

Wolfgang Walter. 1995. Analysis 2 (4 ed.). Springer.
Wolfgang Walter. 2000. Gewohnliche Differentialgleichungen. Springer.

Received July 2015; revised July 2016; accepted April 2017

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 19, Publication date: July 2017.


http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1007/BFb0031565
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://reports-archive.adm.cs.cmu.edu/anon/2014/CMU-CS-14-102.pdf
http://dx.doi.org/10.1145/2817824
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1023/A:1022631318424
http://dx.doi.org/10.1007/978-94-017-1162-3
http://dx.doi.org/10.1142/S0219198904000101
http://dx.doi.org/10.1016/S0022-247X(02)00087-2
http://dx.doi.org/10.1016/0022-0396(85)90136-6
http://dx.doi.org/10.1109/5.871303
http://dx.doi.org/10.1016/j.tcs.2011.08.036

	Introduction
	Preliminaries
	Differential Game Logic
	Syntax
	Differential Games
	Semantics

	Differential Game Proofs
	Soundness Proof
	Differential Game Refinement
	Values of Differential Games
	Viscosity Solutions
	Isaacs Equations
	Frozen Games
	Soundness of Differential Game Invariants
	Soundness of Differential Game Variants

	Differential Game Embeddings
	Related Work
	Conclusions and Future Work
	Encoding Proofs for Embedding
	Non-differential Hybrid Game Axiomatization
	Proof of Isaacs Equations

