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Abstract Aircraft collision avoidance maneuvers are important and com-
plex applications. Curved flight exhibits nontrivial continuous behavior.
In combination with the control choices during air traffic maneuvers, this
yields hybrid systems with challenging interactions of discrete and con-
tinuous dynamics. As a case study illustrating the use of a new proof
assistant for a logic for nonlinear hybrid systems, we analyze collision
freedom of roundabout maneuvers in air traffic control, where appropri-
ate curved flight, good timing, and compatible maneuvering are crucial
for guaranteeing safe spatial separation of aircraft throughout their flight.
We show that formal verification of hybrid systems can scale to curved
flight maneuvers required in aircraft control applications. We introduce
a fully flyable variant of the roundabout collision avoidance maneuver
and verify safety properties by compositional verification.

1 Introduction

In air traffic control, collision avoidance maneuvers [1,2,3,4] are used to resolve
conflicting flight paths that arise during free flight. See Fig. 1 for a series of
increasingly more realistic—yet also more complicated—aircraft collision avoid-
ance maneuvers. Fig. 1c shows a malfunctioning collision avoidance attempt.
Collision avoidance maneuvers are a “last resort” for resolving air traffic con-
flicts that could lead to collisions. They are important whenever conflicts have
not been detected by the pilots during free flight or by the flight directors of the
Air Route Traffic Control Centers. Consequently, complicated online trajectory
prediction or maneuver planning may no longer be feasible in the short time
that remains for resolving the conflict. In the tragic 2002 mid-flight collision in
Überlingen, the aircraft collided tens of seconds after the on-board traffic alert
and collision avoidance system TCAS signalled a traffic alert. Thus, for safe
aircraft control we need particularly reliable reactions with maneuvers whose
correctness has been established previously by a thorough offline analysis. To
ensure correct functioning of aircraft collision avoidance maneuvers under all
circumstances, the temporal evolution of the aircraft in space must be analyzed
carefully together with the effects that maneuvering control decisions have on
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a. b. c. d.

Figure 1. Evolution of collision avoidance maneuvers in air traffic control

their dynamics. This results in complicated superpositions of physical system
dynamics with control, which is an example of what is called hybrid system [5].

Several numerical [1,6,7,8,4] or optimization-based [6,7,9,4] approaches have
been proposed for air traffic control. It is difficult to give sound formal verification
results for these approaches due to errors in numerical computations or implicit
definition of maneuvers in terms of complicated optimization processes. Formal
verification is important to avoid collisions, see Fig. 1c. Formal results have been
given by geometrical reasoning [2,3,10,11] in PVS. Yet, one still has to prove
by other techniques that the hybrid dynamics of a flight controller actually
follows the geometrical shapes. In contrast, we verify the hybrid system dynamics
directly using a formally sound approach (assuming sound elementary decision
procedures), consider curved flight, and achieve better automation.

Control Challenges Because of the complicated spatio-temporal movement of
aircraft, their maneuvers are challenging for verification. Unlike in ground trans-
portation, braking and waiting is not an option to resolve conflicts. Consequently,
aircraft maneuvers have to be coordinated such that the aircraft always respect
minimal and maximal lateral and angular speed constraints yet always remain
safely separated. Further, angular velocity for curving is the primary means of
control, because changes in thrust and linear speed are less efficient for aircraft.

Technical Challenges Complexities in analysis of aircraft maneuvers manifest
most prominently in difficulties with analysing hybrid systems for flight equa-
tions. General solutions of flight equations involve trigonometric functions that
depend on the angular velocity ω and the orientation of the aircraft in space.
For straight line flight (ω = 0), the movement in space is just linear so that
classical analysis techniques can be used [5]. These include pure straight line
maneuvers [1,12,2,3,4]; see, e.g., Fig. 1a. They have to assume instant turns for
heading changes of the aircraft between multiple straight line segments. Instant
turns, however, are impossible in midflight, because they are not flyable: Aircraft
cannot suddenly change their flight direction from 0 to 45 degrees discontinu-
ously. They need to follow a smooth curve instead, in which they slowly steer
towards the desired direction by adjusting the angular velocity ω appropriately.
Moreover, the area required by maneuvers for which instant turns could possibly



Formal Verification of Curved Flight Collision Avoidance Maneuvers 549

be understood as adequately close approximations of properly curved flight is
huge. Curved flight is thus an inherent part of real aircraft control.

During curved flight, the angular velocity ω is non-zero. For ω 6= 0, flight
equations have transcendental solutions, which generally fall into undecidable
classes of arithmetics; see [13]. Consequently, maneuvers with curves, like in
Fig. 1b–1d, are more realistic but also substantially more complicated for veri-
fication than straight line maneuvers like that in Fig. 1a. We have recently de-
veloped a sound verification algorithm that works with differential invariants [14]
instead of solutions of differential equations to address this arithmetic. Now we
show how a fully curved maneuver can be verified by extending our work [14].

In this paper, we introduce and verify the fully flyable tangential round-
about maneuver (FTRM). It refines the non-flyable tangential roundabout man-
euver (NTRM) from Fig. 1d, which has discontinuities at the entry and exit
points of roundabouts, to a fully flyable curved maneuver. Unlike most previ-
ously proposed maneuvers [1,7,12,2,15,3,4], FTRM does not have non-flyable
instant turns. It is flyable and smoothly curved. Unlike other approaches em-
phasizing the importance of flyability [6], we give formal verification results.

Contribution Our main contribution is to show that reality in model design and
coverage in formal verification are no longer incompatible desires even for ap-
plications as complex as aircraft maneuvers. As a case study illustrating the use
of differential dynamic logic for hybrid systems [16], we demonstrate how tricky
and nonlinear dynamics can be verified with our verification algorithm [14] in
our verification tool KeYmaera. We introduce a fully curved flight maneuver
and verify its hybrid dynamics formally. In contrast to previous approaches,
we handle curved flight, hybrid dynamics, and produce formal proofs with al-
most complete automation. Manual effort is still needed to simplify arithmetical
complexity and modularize the proof appropriately. We further illustrate the
resulting verification conditions for the respective parts of the maneuver. Fi-
nally, we identify the most difficult steps during the verification and present new
transformations to handle the enormous computational complexity. To reduce
complexity, we still use some of the simplifications assumed in related work, e.g.,
synchronous maneuvering (i.e. aircraft make simultaneous maneuver choices).

Related Work Lafferriere et al. [17] gave important decidability results for
hybrid systems with some classes of linear continuous dynamics but only random
discrete resets. These results do not apply to air traffic maneuvers, because they
have non-trivial resets: the aircraft’s position does not just jump randomly when
switching modes but, rather, systematically according to the maneuver.

Tomlin et al. [1] analyze competitive aircraft maneuvers game-theoretically
using numerical approximations of partial differential equations. As a solution,
they propose roundabout maneuvers and give bounded-time verification results
for straight-line approximations (Fig. 1a). We verify curved roundabouts with a
sound symbolic approach that avoids approximation errors.

Flyability has been identified as one of the major challenges in Košecká et al.
[6], where planning based on superposition of potential fields has been used to re-



550 André Platzer and Edmund M. Clarke

solve air traffic conflicts. This planning does not guarantee flyability but, rather,
defaults to classical vertical altitude changes whenever a nonflyable path is de-
tected. The resulting maneuver has not yet been verified. The planning approach
has been pursued by Bicchi and Pallottino [7] with numerical simulations.

Numerical simulation algorithms approximating discrete-time Markov Chain
approximations of aircraft behavior have been proposed by Hu et al. [8]. They
approximate bounded-time probabilistic reachable sets for one initial state. We
consider hybrid systems combining discrete control choices and continuous dy-
namics instead of uncontrolled, probabilistic continuous dynamics.

Hwang et al. [4] have presented a straight-line aircraft conflict avoidance man-
euver that involves optimization over complicated trigonometric computations,
and validate it using random numerical simulation and informal arguments.

The work of Dowek et al. [2] and Galdino et al. [3] is probably closest to ours.
They consider straight-line maneuvers and formalize geometrical proofs in PVS.

Attempts to Model Check discretizations of roundabout maneuvers [12,15]
indicated avoidance of orthogonal collisions (Fig. 1b). Counterexamples found
by our Model Checker in previous work show that collision avoidance does not
extend to other initial flight paths of the classical roundabout (Fig. 1c).

Pallottino et al. [18] have presented a spatially distributed pattern for mul-
tiple roundabout circles at different positions. They reason manually about de-
sirable properties of the system and estimate probabilistic results as in [8]. Pal-
lottino et al. thus take a view that is complementary to ours: they determine the
global compatibility of multiple roundabouts while assuming correct functioning
within each local roundabout. We verify that the actual hybrid dynamics of each
local roundabout is collision free. Generalizing our approach to a spatial pattern
of verified local roundabouts could be interesting future work.

Similarly, the work by Umeno and Lynch [11,10] is complementary to ours.
They consider real-time properties of airport protocols using Timed I/O Auto-
mata. We are interested in proving local properties of the actual hybrid system.

Our approach has a very different focus than other complementary work:

– Our maneuver directly involves curved flight unlike [1,8,2,3,4,11,10]. This
makes our maneuver more realistic but much more difficult to analyze.

– Unlike [6,8,4], we do not give results for a finite (sometimes small) number
of initial flight positions (simulation). Instead, we verify uncountably many
initial states and give unbounded-time horizon verification results.

– Unlike [1,6,7,8,9,4], we use symbolic instead of numerical computation so
that numerical and floating point errors cannot cause soundness problems.

– Unlike [7,12,8,2,3,4,11,10], we analyze hybrid system dynamics directly.
– Unlike [6,1,7,8,4,12,18] we produce formal, deductive proofs. Further unlike

the formal proofs in [2,3,11,10], our verification is much more automatic.
– In [2,3,4,11,10], it remains to be proven that the hybrid dynamics and flight

equations follow the geometrical thoughts. In contrast, our approach dir-
ectly works for the hybrid flight dynamics. We illustrate verification results
graphically to help understand them, but the figures do not prove anything.

– Unlike [19], we consider collision avoidance maneuvers, not just detection.
– Unlike [7,9], we do not guarantee optimality of the resulting maneuver.
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up
z′ = 1
z ≤ 9

down
z′ = −1

z ≥ 5

z := z − 1

z ≤ 2

q := up; /* initial location is up */`
(?q = up; z′ = 1 ∧ z ≤ 9)

∪ (?q = up ∧ z ≥ 5; z := z − 1; q := down)
∪ (?q = down; z′ = −1)

∪ (?q = down ∧ z ≤ 2; q := up; ?z ≤ 9)
´∗

Figure 2. Hybrid automaton vs. hybrid program (simplistic altitude control)

2 Background: Differential Dynamic Logic

Hybrid Programs We use a hybrid program (HP) notation [16] for hybrid systems
that include hybrid automata (HA) [5]. Each discrete and continuous transition
corresponds to a sequence of statements, with a nondeterministic choice (∪)
between these transitions. Line 2 in Fig. 2 represents a continuous transition in
a simplistic altitude controller. It tests (denoted by ?q = up) if the current loca-
tion q is up, and then follows a differential equation z′ = 1 restricted to invariant
region z ≤ 9 (conjunction z′ = 1 ∧ z ≤ 9). Line 3 tests guard z ≥ 5 when in state
up, resets z by a discrete assignment, and then changes location q to down. The ∗

at the end indicates that the transitions of a HA repeat indefinitely. We will build
HP directly, which gives more natural programs than HA-translation.

As terms we allow polynomials over Q with variables in a set V . Hybrid
programs (HP) are built with the statements in Table 1. The effect of x := θ
is an instantaneous discrete jump assigning θ to x. Instead, x := ∗ randomly
assigns any real value to x by a nondeterministic choice. During a continu-
ous evolution x′1 = θ1 ∧ . . . ∧ x′n = θn ∧ χ with terms θi, all conjuncts need to
hold. Its effect is a continuous transition controlled by the differential equation
x′1 = θ1, . . . , x

′
n = θn that always satisfies the arithmetic constraint χ (thus re-

mains in the region described by χ). This directly corresponds to a continuous
evolution mode of a HA. The effect of state check ?χ is a skip (i.e., no change)
if χ is true in the current state and that of abort, otherwise. Non-deterministic
choice α ∪ β expresses alternatives in the behavior of the hybrid system. Se-
quential composition α;β expresses a behavior in which β starts after α finishes

Table 1. Statements and (informal) effects of hybrid programs (HP)

notation statement effect

x := θ discrete assignment assigns term θ to variable x ∈ V
x := ∗ nondet. assignment assigns any real value to x ∈ V
x′1 = θ1 ∧ . . .

continuous evolution
diff. equations for xi ∈ V and terms θi,

. . . ∧ x′n = θn ∧ χ with formula χ as evolution domain
?χ state check test formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N
doα until χ evolve until evolve HP α until χ holds
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(β never starts if α continues indefinitely). Non-deterministic repetition α∗, re-
peats α an arbitrary number of times (≥0). The operation doα until χ expresses
that the system follows α exactly until condition χ is true.

Formulas of dL To express and combine correctness properties of HP, we use
a verification logic for HP: The differential dynamic logic dL [16] is an exten-
sion of first-order logic over the reals with modal formulas like [α]φ, which is
true iff all states reachable by following the transitions of HP α satisfy prop-
erty φ (safety). Reachability properties are expressible using the dual modality
〈α〉φ, which is true iff there is a state satisfying φ that α can reach from its initial
state. Formulas of dL are defined by the following grammar, where θ1, θ2 are
terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ are formulas, x ∈ V , and α is an HP (Table 1):

Formula ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all states
reachable by HP α satisfy φ when starting from an initial state that satisfies ψ.

3 Curved Flight in Roundabout Maneuvers

3.1 Flight Dynamics

x1

x2

y1

y2

d

ω e

ς

̺

Figure 3. Aircraft flight

The parameters of two aircraft at (planar) posi-
tion x = (x1, x2) and y = (y1, y2) in R2 flying in dir-
ections d = (d1, d2) ∈ R2 and e = (e1, e2) are illus-
trated in Fig. 3. Their dynamics is determined by
their angular speeds ω, % ∈ R and linear velocity vec-
tors d and e, which describe both the linear velo-
city ‖d‖ :=

√
d2
1 + d2

2 and orientation of the aircraft in
space. Roundabout maneuvers are horizontal collision
avoidance maneuvers so that, like [1,12,9,15,18,3,4],
we simplify to planar positions. We denote the flight equations for the aircraft
at x and y with angular velocities ω, % by F(ω) and G(%) respectively, see [1,13]:

[x′ = d d′ = ωd⊥] (F(ω)) [y′ = e e′ = %e⊥ ] (G(%))
There d⊥ := (−d2, d1) is the orthogonal complement of vector d. Differential
equations F(ω) express that x is moving in direction d, which is rotating with
angular velocity ω, i.e., evolves orthogonal to d. Equations G(%) are similar for
y, e and %. In safe flight configurations, aircraft respect protected zone p. That
is, they are separated by at least distance p, i.e., the state satisfies formula S(p):

S(p) ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2 for p ∈ R (1)

Like all other parameters, we treat p purely symbolically without a specific value.
In practice, horizontal separation should be ≥5mi, vertical separation ≥1000ft.
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Figure 4. Protocol cycle and construction of flyable roundabout maneuver

3.2 Roundabout Maneuver Overview

FTRM consists of the phases in the protocol cycle in Fig. 4a which correspond to
the marked flight phases in Fig. 4b. During free flight, the aircraft move without
restriction by repeatedly choosing arbitrary new angular velocities ω and % re-
spectively (as indicated by the self loop at free in Fig. 4a). When the aircraft
come too close to one another, they agree on a roundabout maneuver by nego-
tiating a compatible roundabout center c = (c1, c2) in coordination phase agree
by communication. Next, the aircraft approach the roundabout circle in a right
curve with ω < 0 (entry mode) according to Fig. 4b, and reach a tangential
position around center c. During the circ mode, the aircraft follow the circular
roundabout maneuver around the agreed center c with a left curve of common
angular velocity ω > 0. Finally, the aircraft leave the roundabout in cruise mode
(ω = 0) in their original direction (exit) and enter free flight again when they
have reached sufficient distance (the protocol cycle repeats as necessary).

3.3 Compositional Verification Plan

For verifying safety properties and collision avoidance of FTRM, we decompose
the verification problem and pursue the following overall verification plan:

AC1 Tangential roundabout maneuver cycle: We prove that the protected zones
of aircraft are safely separated at all times during the whole maneuver
(including repetitive collision avoidance maneuver initiation and includ-
ing multiple aircraft) with a simplified but not yet flyable entry operation
entryn. Subsequently, we refine this verification result to a flyable man-
euver by verifying that we can replace entryn with its flyable variant entry .

AC2 Bounded control choices for aircraft velocities: We show that linear speeds
remain unchanged during the whole maneuver (the aircraft do not stall).

AC3 Flyable entry : We prove that the simplified entryn procedure can be re-
placed by a flyable curve entry reaching the same position as entryn.

AC4 Bounded entry duration: Flyable entry procedure succeeds in bounded
time, i.e., aircraft reach the roundabout circle in some bounded time ≤T .

AC5 Safe entry separation: Most importantly, we prove that the protected zones
of aircraft are still respected during the flyable entry procedure.
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AC6 Successful negotiation: We prove that the negotiation phase (agree) satis-
fies the respective requirements of multiple aircraft simultaneously.

AC7 Safe exit separation: We show that, for its bounded duration, the exit
procedure cannot produce collisions and that the initial far separation for
free flight is reached again so that the FTRM cycle repeats safely.

This plan modularizes the proof and allows us to identify the respective safety
constraints imposed by the various maneuver phases successively. We present
details of these verification tasks in the sequel and summarize the respective
verification results into a joint safety property of FTRM in Section 5. The proof
and formulation for AC2 is a simple variation of AC1 and will not be discussed.

3.4 Tangential Roundabout Maneuver Cycles (AC1)

First, we analyze roundabouts with a simplified instant entry procedure and
without an exit procedure (AC1), i.e., the non-flyable NTRM depicted in Fig. 1d.
We refine this maneuver and its verification to the flyable FTRM afterwards.

Modular Correctness of Tangential Roundabout Cycles We verify that NTRM
safely avoids collisions, i.e., the aircraft always maintain a safe distance≥p during
the curved flight in roundabout. In addition, these results show that arbitrary
repetitions of the protocol cycle are always safe when, as a first step, we simplify
the entry maneuver. The NTRM model and property are summarized in Fig. 5.

ψ ≡ S(p)→ [NTRM]S(p)
NTRM ≡ (free; agree; entryn; circ)∗

free ≡ (ω := ∗; % := ∗; F(ω) ∧ G(%) ∧ S(p))∗

agree ≡ ω := ∗; c := ∗
entryn ≡ d := ω(x− c)⊥; e := ω(y − c)⊥

circ ≡ F(ω) ∧ G(ω)

Figure 5. Nonflyable tangential roundabout col-
lision avoidance maneuver NTRM

The simplified flight control-
ler in Fig. 5 performs colli-
sion avoidance maneuvers by
tangential roundabouts and
repeats these maneuvers any
number of times as needed.
During each cycle of the
loop of NTRM , the aircraft
first perform arbitrary free
flight (free) by choosing ar-
bitrary new angular velocit-
ies ω and % (repeatedly as in-
dicated by the loop in free).
Aircraft only fly freely while they are safely separated, which is expressed by
constraint S(p) in the differential equation for free. Then the aircraft agree on
an arbitrary roundabout center c and angular velocity ω (agree). We model this
communication by nondeterministic assignments to the shared variables ω, c.
Refinements include all negotiation processes that reach an agreement on com-
mon ω, c in bounded time. Next, they perform the simplified non-flyable entry
procedure (entryn) with instant turns (Fig. 1d). This operation identifies the goal
state that entry needs to reach:

R ≡ d = ω(x− c)⊥ ∧ e = ω(y − c)⊥ (2)
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c

x

y
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e

Figure 6. R

It expresses that, at the positions x and y, respectively, the dir-
ections d and e are tangential to the roundabout circle at cen-
ter c and angular velocity ω; see Fig. 6. Finally, the roundabout
maneuver itself is carried out in circ. The collision avoidance
roundabouts can be left again by repeating the loop and en-
tering arbitrary free flight at any time. When further conflicts
occur during free flight, the controller in Fig. 5 again enters
roundabout conflict resolution maneuvers.

Multiple Aircraft We prove separation for up to 5 aircraft participating in the
roundabout at the same time. There, the safety property is mutual collision
avoidance, i.e., each aircraft has a safe distance ≥p to every other aircraft, which
yields a quadratic number of separation properties that have to be verified. This
quadratic increase in the size of the property that actually needs to be proven
for a safe roundabout of n aircraft and the increased dimension of the underlying
continuous state space increase verification times. Also see [13].

3.5 Flyable Entry Procedures (AC3)

For property AC3 in Section 3.3, we generalize the verification results about
NTRM with simplified entry procedures (Fig. 1d) to FTRM (Fig. 4b) by repla-
cing the non-flyable entryn procedure with flyable curves (called entry). This
turns the non-flyable NTRM into the flyable FTRM maneuver.

Flyable Entry Properties A flyable entry maneuver that follows the smooth entry
curve from Fig. 4b is constructed according to Fig. 7a and specified formally as:

(rω)2 = ‖d‖2∧‖x−c‖ =
√

3r∧∃λ≥0 (x+λd = c)∧ ‖h−c‖ = 2r ∧ d = −ω(x−h)⊥

→ [F(−ω) ∧ ‖x− c‖ ≥ r]
(
‖x− c‖ ≤ r → d = ω(x− c)⊥

)
(3)

The assumptions in (3) express that r is the radius corresponding to speed ‖d‖
and angular velocity ω ((rω)2 = ‖d‖2) and that entry starts with distance

√
3r to

c heading towards c (∃λ≥0 (x+ λd = c)). For the construction of the maneuver

a.

c

r

r

h

x
ω < 0 ω > 0

y

b.

x

d ω

ye

≥p

Figure 7. Flyable entry maneuver: characteristics and separation
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and positioning in space, we use the auxiliary anchor point h ∈ R2 identified in
Fig. 7a and line 1 of (3). It is positioned relative to the roundabout center c and
the x position at the start of the entry curve (i.e., with x at the right angle
indicated in Fig. 7a). The entry curve around h is similar to the roundabout
curve around c. Formally, h is characterized by distance r to x, distance 2r to c
(‖h− c‖ = 2r) and, further, vector x− h is orthogonal to d and obeys the relative
orientation of the curve belonging to −ω (hence d = −ω(x− h)⊥). The property
in (3) specifies that the tangential goal configuration (2) around c is reached
by a flyable curve when waiting until aircraft x and center c have distance r,
because the domain restriction of the dynamics is ‖x− c‖ ≥ r (line 2) and the
postcondition assumes ‖x− c‖ ≤ r, which imply ‖x− c‖ = r. The feasibility of
choosing anchor point h can be shown by proving an existence property; see [13].

Spatial Symmetry Reduction The property in (3) can be verified in a simplified
version. We use a new spatial symmetry reduction to simplify property (3) com-
putationally. We exploit symmetries to reduce the spatial dimension by fixing
variables. Without loss of generality, we recenter the coordinate system with c
at position 0. Further, we can assume aircraft x comes from the left by chan-
ging the orientation of the coordinate system. Finally, we assume, without loss
of generality, linear speed 1 (by rescaling units appropriately). Observe that we
cannot fix a value for both the linear speed and the angular velocity, because the
units are interdependent. In other words, if we fix the linear speed, we need to
consider all angular velocities in order to verify the maneuver for each possible
radius r of the roundabout maneuver (and corresponding ω). The x position res-
ulting from these symmetry reductions can be determined easily by Pythagoras
theorem (i.e., (2r)2 = r2 + x2

1 for the triangle enclosed by h, x, c in Fig. 7a):

x = (
√

(2r)2 − r2, 0) = (
√

3r, 0) . (4)

3.6 Bounded Entry Duration (AC4)

As the first step for showing that the entry procedure finally succeeds at goal (2)
and maintains a safe distance all the time, we show that entry succeeds in
bounded time and cannot take arbitrarily long to succeed (AC4 in Section 3.3).

By a simple consequence of (3), the entry procedure follows a circular motion
around anchor point h, see Fig. 7a. That is, when r is the radius belonging to
angular velocity ω and linear speed ‖d‖, the property ‖x− h‖ = r is an invariant
of entry ; see [13]. By AC2, which can be proven easily, the speed ‖d‖ is constant
during the entry procedure. Thus, the aircraft proceeds with nonzero minimum
progress rate ‖d‖ around the circle. The flight duration for a full circle of radius r
around h at constant linear speed ‖d‖ is 2πr

‖d‖ , because its arc length is 2πr. From
the trigonometric identities underlying equation (4), we can read off that the
aircraft completes a π

3 = 60◦ arc, see Fig. 7a. Hence, the maximum duration T
of the entry procedure is: T := 1

6 ·
2πr
‖d‖ = πr

3‖d‖ Instead of π, which is not definable
in first-order real arithmetic, we can use any overapproximation, e.g., 3.15.
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3.7 Safe Entry Separation (AC5)

c

Figure 8. Multiple
aircraft

In Section 3.5, we have shown that the simplified entryn
procedure from NTRM can be replaced by a flyable entry
maneuver that meets the requirements of approaching tan-
gentially for each aircraft. Unlike in instant turns (entryn),
we have to show that the flyable entry maneuvers of mul-
tiple aircraft do not produce mutually conflicting flight
paths, i.e., spatial separation of all aircraft is maintained
during the entry of multiple aircraft (AC5). See Fig. 8 for
multiple aircraft FTRM where separation is important.

Bounded Overapproximation We show that entry separation is a consequence
of the bounded speed (AC2) and bounded duration (AC4) of the flyable entry
procedure when initiating the negotiation phase agree with sufficient distance.
We prove that, when following bounded speed for a bounded duration, aircraft
only come closer by a bounded distance. Let b denote the overall speed bound
during FTRM according to AC2 and let T be the time bound for the duration
of the entry procedure due to AC4. We overapproximate the actual behavior
during the entry phase by arbitrary curved flight (see Fig. 7b). When the entry
procedure is initiated with sufficient distance

√
2(p+ 2bT ), the protected zone

p≥0 will still be respected after the 2 aircraft follow any curved flight (including
the actual choices during the entry phase and subsequent circ phase) with speed
‖d‖ ≤ b and ‖e‖ ≤ b up to T ≥ 0 time units (see Fig. 7b):

‖x− y‖ ≥
√

2(p+ 2bT ) ∧ p ≥ 0 ∧ ‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ b ≥ 0 ∧ T ≥ 0
→ [entry] (‖x− y‖ ≥ p) (5)

In [13], we show that this property follows from the more general fact that
aircraft only make limited progress in bounded time from some initial point z
when starting with bounded speeds (even when changing ω arbitrarily):

x = z ∧ ‖d‖2 ≤ b2 ∧ b ≥ 0 → [τ := 0; F(ω) ∧ τ ′ = 1] (‖x− z‖∞ ≤ τb) (6)

The maximum distance ‖x− z‖∞ from z depends on clock τ and bound b. To re-
duce the polynomial degree and the verification complexity, we overapproximate
distances from quadratic Euclidean norm ‖ · ‖ in terms of linearly definable su-
premum norm ‖ · ‖∞, instead, which is ‖x‖∞ ≤ c ≡ −c ≤ x1 ≤ c ∧ −c ≤ x2 ≤ c.

Far Separation By combining the estimation of the entry duration (3.6) at speed
‖d‖ = b with the entry separation property (5), we determine the following mag-
nitude as the far separation f , i.e., the initial distance guaranteeing that the
FTRM protocol can be repeated safely in case new collision avoidance is needed:

f :=
√

2(p+ 2bT ) =
√

2
(
p+

2
3
πr

)
(7)
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4 Synchronization of Roundabout Maneuvers

Following our verification plan in Section 3.3, we show that the various actions
of multiple aircraft can be synchronized appropriately to ensure safety of the
maneuver. We analyze the negotiation phase and compatible exit procedures.

4.1 Successful Negotiation (AC6)

For negotiation to succeed (AC6), we have to show that there is a common choice
of the roundabout center c and angular velocity ω (or radius r) so that multiple
participating aircraft can satisfy the local requirements of their respective entry
procedures simultaneously, i.e., of the property (3) for AC3.

We prove that all corresponding choices of agree satisfy the mutual require-
ments of multiple aircraft simultaneously. As one possible option among others:
when choosing roundabout center c as the simultaneous intersection (intersec-
tion x+ λd = y + λe after time λ) of the flight paths of the aircraft at x and y,
the choices for c, r, ω are compatible for multiple aircraft; see Fig. 9a:

λ > 0 ∧ x+ λd = y + λe ∧ ‖d‖ = ‖e‖ →

[c := x+ λd; r := ∗; ?‖x− c‖ =
√

3r; ?‖y − c‖ =
√

3r; ω := ∗; ?(rω)2 = ‖d‖2](
‖x− c‖ =

√
3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =

√
3r ∧ y + λe = c

)
(8)

The tests in the dynamics ensure that the entry curve starts when x, y and c
have appropriate distance

√
3r identified in Section 3 and that r is the radius

belonging to angular velocity ω and linear speed ‖d‖. This property expresses
that, for aircraft heading towards the simultaneous intersection of their flight
paths with speed ‖d‖ = ‖e‖ (line 1), the intersection of the linear flight paths
(line 2) is a safe choice for c satisfying the joint requirements (line 3) identified
in Section 3. For an analysis of far separation during negotiation and of the
feasibility of these choices, see[13]. Other choices of c, ω than Fig. 9a are possible
for asymmetric initial positions of aircraft, but computationally more involved.

4.2 Safe Exit Separation (AC7)

NTRM (Fig. 1d) does not need an exit procedure for safety, because the man-
euver repeats when further air traffic conflicts arise. For FTRM, instead, we

a.

√
3r

c

√
3r

γ

≥
√

2(p+ 2
3
πr)

x
d

y
e

b.

c

c.

c

Figure 9. Separation of negotiation and good and bad exit procedure separation
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ψ ≡ ‖d‖ = ‖e‖ ∧ r > 0 ∧ S(f)→ [FTRM∗]S(p)

C ≡ ‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c) ∧ ‖y − c‖ =
√

3r ∧ ∃λ≥0 (y + λe = c)

FTRM ≡ free∗; agree; Π(entry; circ; exit)

free ≡ ω := ∗; % := ∗; F(ω) ∧ G(%) ∧ S(f)

agree ≡ c := ∗; r := ∗; ?(C ∧ r > 0); ?S(f);

ω := ∗; ?(rω)2 = ‖d‖2; x0 := x; d0 := d; y0 := y; e0 := e

entry ≡ doF(−ω) until ‖x− c‖2 = r2

circ ≡ doF(ω) until ∃λ≥0 ∃µ>0 (x+ λd = x0 + µd0)

exit ≡ F(0); ?S(f)

Figure 10. Flight control with flyable tangential roundabout collision avoidance

need to show that the exit procedure produces safe flight paths until the air-
craft are sufficiently separated: When repeating the FTRM maneuver, the entry
procedure needs far separation (7) not just distance p for safety, see Fig. 4b.

Safe Separation If the aircraft enter simultaneously, they can exit simultaneously.
For AC7, we first show that aircraft that exit simultaneously (from tangential
positions of the roundabout circle) always respect their protected zones:

R∧ ‖x− y‖2 ≥ p2 → [x′ = d ∧ y′ = e] (‖x− y‖2 ≥ p2) (9)

Thus, safely separated aircraft exiting simultaneously along straight lines from
tangential positions (R by eqn. 2) of a roundabout always remain safely separ-
ated. We prove an overapproximation: exit rays (Fig. 9b–9c) are separated [13].

Far Separation Aircraft reach arbitrary separation when following the exit pro-
cedure long enough. Using overapproximation Fig. 9b, we prove that—due to dif-
ferent exit directions d 6= e—the exit procedure will finally separate the aircraft
arbitrarily far (starting from tangential configuration (2) of the roundabout):

R∧ d 6= e → ∀a 〈x′ = d ∧ y′ = e〉 (‖x− y‖2 > a2) (10)

5 Flyable Tangential Roundabout Maneuver

We combine the results about the individual phases of flyable roundabouts into
a full model of FTRM that inherits safety modularly. We collect the maneuver
phases according to the protocol cycle of Fig. 4 and take care to ensure that the
safety prerequisites are met, as identified for the respective phases in Section 3-4.

One possible instance of FTRM is the HP in Fig. 10, which is composed
of previously illustrated parts of the maneuver. The technical construction and
protocol cycle of the entry procedure have already been illustrated in Fig. 4. In
FTRM, Π denotes the synchronous parallel product. By communication, FTRM
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free

agree

entry

circ

exit

S(f) S
(f) ∧

C

S(
p)
∧
R

S(p) ∧R

S
(f

)

Decomposed property of system dynamics See

S(f)→ [free]S(f) Fig. 5
S(f)→ [agree](S(f) ∧ C) (8), [13]

C ∧ S(f)→ [entry]S(p) (5)
C ∧ S(f)→ [entry]R (3)
R∧ S(p)→ [circ](S(p) ∧R) Fig. 5
R∧ S(p)→ [exit]S(p) (9)
R∧ S(p)→ [exit]S(f) (9), (10)

Figure 11. Composing verification for flyable tangential roundabout maneuvers

operates synchronously, i.e., all aircraft make simultaneous mode changes [4].
Consequently, the parallel productΠ(entry; circ; exit) of HP simplifies to the con-
junction of the respective differential equations in the various modes and can be
defined easily: (entryx ∧ entryy) ; (circx ∧ circy) ; (exitx ∧ exity) where entryx is
the entry procedure of the aircraft at position x (likewise for more aircraft).

To verify this maneuver, we split the proof into the modular properties that
we have already shown previously following the verification plan from Section 3.3.
Formally, we split the system at its sequential compositions, giving the subprop-
erties depicted in Fig. 11. Formula R is due to equation (2) and S(p) by (1).

By combining the results about the FTRM flight phases as summarized in
Fig. 11, we conclude that FTRM avoids collisions safely. The modular proof
structure in Fig. 11 still holds when replacing any part of the maneuver with a
different choice that still satisfies the specification, e.g., for different entry pro-
cedures that still succeed in tangential configuration R within bounded time.
This includes roundabouts with asymmetric positions, i.e., where the initial dis-
tance to c can be different, and with near conflicts, where the flight paths do
not intersect in one point but in a larger critical region [4]. Most notably, the
separation proof in Section 3.7 tolerates asymmetric distances to c (Fig. 7b).

Theorem 1 (Safety property of flyable tangential roundabouts). FTRM
is collision free, i.e., the collision avoidance property ψ in Fig. 10 is valid. Fur-
thermore any variation of FTRM with a modified entry procedure that safely
reaches tangential configuration R in some bounded time T is safe. That is if
the following formula holds, saying that, until time T , the aircraft have safe
distance p and will have reached configuration R at time T , where τ is a clock:

S(f) → [τ := 0; entry ∧ τ ′ = 1]
(
(τ ≤ T → S(p)) ∧ (τ = T → R)

)
.

6 Experimental Results

Table 2 summarizes experimental results obtained using the tool KeYmaera on a
2.6GHz AMD Opteron with 4GB memory; we use different proof search settings
than in [14]. Rows marked with ∗ indicate a property where simplifications like
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Table 2. Experimental results for air traffic control (see [13] for details)

Case study See Time(s) Memory(MB) Steps Dimension

tangential roundabout 2 aircraft 10.4 6.8 197 13
tangential roundabout 3 aircraft 253.6 7.2 342 18
tangential roundabout 4 aircraft 382.9 10.2 520 23
tangential roundabout 5 aircraft 1882.9 39.1 735 28

bounded maneuver speed AC2 0.5 6.3 14 4

flyable roundabout entry∗ (3) 10.1 9.6 132 8

flyable entry feasible∗ [13] 104.5 87.9 16 10

flyable entry circular [13] 3.2 7.6 81 5

limited entry progress (6) 1.9 6.5 60 8
entry separation [13] 140.1 20.1 512 16

mutual negotiation successful (8) 0.8 6.4 60 12
mutual negotiation feasible∗ [13] 7.5 23.8 21 11
mutual far negotiation [13] 2.4 8.1 67 14

simultaneous exit separation∗ [13] 4.3 12.9 44 9
different exit directions [13] 3.1 11.1 42 11

symmetry reduction have been used to reduce the computational complexity.
Table 2 shows that even aircraft maneuvers with challenging hybrid curve dy-
namics can be verified formally. Memory consumption of quantifier elimination
is shown in Table 2, excluding the front-end. The dimension of the continuous
state space and number of automatic proof steps are indicated. Except for simple
help in the proof of one property, the proofs for Table 2 are automatic.

7 Summary

We have analyzed complex air traffic control applications. Real aircraft can only
follow sufficiently smooth flyable curves. Hence, mathematical maneuvers that
require instant turns give physically impossible conflict resolution advice. We
have developed a new collision avoidance maneuver with smooth, fully flyable
curves. Despite its complicated dynamics and maneuvering, we have verified col-
lision avoidance in this flyable tangential roundabout maneuver formally using
our verification algorithm for a logic of hybrid systems. Because of the intricate
spatio-temporal movement of aircraft in curved roundabouts, some of the prop-
erties require intricate arithmetic, which we handled by symmetry reduction and
degree-based reductions. The proof is automatic except for modularization and
arithmetical simplifications to overcome the computational complexity.

While the flyable roundabout maneuver is a highly nontrivial and challenging
study, we still use modeling assumptions that should be relaxed in future work,
e.g., synchronous, symmetric conflict resolution. Further generalizations include
different varying cruise speeds, disturbances or new aircraft. The proof structure
behind Theorem 1 is already sufficiently general, but the computational com-
plexity high. It would be interesting future work to see if the informal robustness
studies of Hwang et al. [4] can be carried over to a formal verification result.
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