
Using a Program Verification Calculus
for Constructing Specifications from

Implementations

André Platzer

5th June 2004

Minor Thesis

University of Karlsruhe

Department of Computer Science

Institute for Logic, Complexity and Deduction Systems

Responsible Supervisor: Prof. Dr. Peter H. Schmitt

Supervisor: Dr. Bernhard Beckert

Using a Program Verification Calculus
for Constructing Specifications from

Implementations

André Platzer

5th June 2004

Studienarbeit

Universität Karlsruhe (TH)

Fakultät für Informatik

Institut für Logik, Komplexität und Deduktionssysteme

Verantwortlicher Betreuer: Prof. Dr. Peter H. Schmitt

Betreuer: Dr. Bernhard Beckert

Abstract

In this paper we examine the possibility of automatically constructing the
program specification from an implementation, both from a theoretical per-
spective and as a practical approach with a sequent calculus. As a setting for
program specifications we choose dynamic logic for the Java programming
language. We show that – despite the undecidable nature of program analysis
– the strongest specification of any program can always be constructed algo-
rithmically. Further we outline a practical approach embedded into a sequent
calculus for dynamic logic and with a higher focus on readability. Therefor,
the central aspect of describing unbounded state changes incorporates the
concept of modifies lists for expressing the modifiable portion of the state
space. The underlying deductions are carried out by the theorem prover of
the KeY System.

Contents

1 Introduction 1

1.1 Intention . 1

1.2 Context . 2

1.3 Related Work . 3

1.4 Notation . 4

2 Formalisation 5

2.1 Programming Language . 5

2.2 Specifications . 6

2.3 Choosing a Preference Ordering 10

2.4 Terminology . 14

3 Computability Analysis 19

3.1 Hop States . 19

3.2 Maximal Specifications . 23

4 The Modifies List 27

4.1 Generic Modifies List . 27

4.2 Lowering Higher-Order Logic 31

4.3 Practical Treatment . 32

5 Sequent Calculus Approach 35

5.1 Overview . 35

5.2 Constructing Special Proof Obligations 37

5.3 State Change Accumulation 38

5.4 Specification Extraction . 39

5.5 Quintessence . 46

5.6 Examples . 49

5.7 Specification Construction Calculus 52

i

6 Extensions 57
6.1 Change Equations . 57
6.2 Specification Completion . 58
6.3 Weak Specifications . 60

7 Implementation 63
7.1 User interaction . 63
7.2 Details . 63
7.3 Limitations . 64

8 Summary 65

A Properties 69
A.1 Substitution . 69
A.2 Rigidity . 71
A.3 Elementary Properties . 72
A.4 Specific Variations . 73

ii

Chapter 1

Introduction

1.1 Intention

The goal of this project is to provide a means for computing the specification
of a program from its implementation, whenever possible. So given a (part of
a) computer program, the task is to find a specification that this program sat-
isfies, and also to determine the conditions when this construction is feasible.
Since every single program satisfies several specifications this construction
should favour specifications that are in some sense superior to others. Quite
clearly, for example, it should usually prefer stronger specifications to weaker
specifications that are a consequence of the stronger ones. However, a second
criterion for specifications should be readability, and the true problems arise
when both criteria conflict. In this project, we generally focus on stronger
specifications first, attaining maximum readability whenever possible. Notice
that the converse priorisation would, of course, be undecidable (except for
trivial specifications with no real content).

Given this setting, the results of our approach will be integrated as
a module into the KeY System [Ahrendt et al., 2004]. This also neces-
sitates that the resulting specifications are formulated in dynamic logic
[Harel et al., 2001, Harel et al., 2000, Harel, 1984] for the Java programming
language [Gosling et al., 1996]. The construction process for computed spec-
ifications will be based on the sequent calculus theorem prover of the KeY
specification and verification system including the available program trans-
formations of the underlying deduction and rewrite system.

Possible application scenarios of automatic specification construction in-
clude reverse-engineering of pre-existing code into a formal model, partial
specification completion, and computer-generated descriptions of Java meth-
ods that use complicated statements, in single-step terminology. Whilst the

1

latter scenario is intended for supporting the user, the former two would in
principle profit from user interaction as well, but are not limited to that.

In the reverse-engineering case, our approach may help to further bridge
the gap between the theoretical requirement of a completely specified formal
model, and the usual practice of a mixture of non-specified code, code an-
notated with formal specifications, and unimplemented pure specifications.
Also an automatic generation of specifications can be realised for simple cases
where a user did not consider that any explicit specifications were necessary.
For a full integration of partially specified code and partially implemented
specifications in a two-way tool, also the inverse possibility of generating the
source code according to a simple specification should be possible. However,
source code generation is beyond the scope of this project. In addition to
the mere engineering advantages of mixing implementation and specifica-
tion, there can also be a computational advancement for proof generation.
Computing the specification of a non-specified method enables bottom-up
generation of proofs in a way very similar to lemma generation. Prior to
proving conjectures about a piece of code, an automatic specification of all
the methods it calls may speed up the proof procedure. Whenever a method
call targets on a method without specification, the proof system has to step
into its implementation source code. As invocations of the same method may
happen more than once throughout the source code, and they even multiply
on different proof branches, the same source code will have to be examined by
the calculus over and over again. On the other hand if a method specification
is available or can be constructed automatically then all these inspections of
the method body can be replaced by the specification. In the case of a com-
plex piece of code achieving a result that is simple to express, this could have
a worthwhile effect on the overall proof length.

In the scenario of partial specifications, instead, the goal is not one of
enriching completely non-specified code automatically with formal specifica-
tions. Rather, the user manually specifies some part of the program’s effect
and leaves its completion to the proof system.

1.2 Context

A device for automatic specification construction following our practical ap-
proach is integrated into the KeY System as a module. The KeY System
[Ahrendt et al., 2004] is a semi-automatic interactive proof system based on
sequent calculus for dynamic logic for Java (called JavaDL). KeY adds for-
mal specification and verification facilities to UML1-based software models

1UML = Unified Modeling Language [Rumbaugh et al., 1998, Rumbaugh et al., 1999]

2

by means of theorem proving. Due to the close integration into a familiar
modelling environment and a real-world programming language, KeY has
surpassing prospects of accomplishing its goal of bridging the gap between
what academic case-studies demonstrate is possible and industrial practice.
In order to facilitate a smooth integration into the present development pro-
cess, and a gradual involvement of formal methods, KeY combines with usual
case-tools. Currently, KeY is available as a stand-alone prover and as a plug-
in for Together [TogetherSoft, 2003].

1.3 Related Work

In the past, there have been some approaches related to automatic spec-
ification construction. First of all, immediate transformations to strongest
specifications similar to the well known weakest precondition [Dijkstra, 1976]
calculus. Basically, the process relies on direct transformation functions from
programs to formulas, inductively defined over the syntactical constructs
of the programming language. Contrary to the weakest precondition cal-
culus they do not start from a postcondition and derive the weakest pre-
condition required to let program runs satisfy the postcondition. Rather
they take a pre-specified precondition and derive the strongest postcondi-
tion fulfilled after the general program run. See [Gannod and Cheng, 1995,
Gannod and Cheng, 1997, Gannod et al., 1998] for more details.

Then there is the approach Houdini [Flanagan and Leino, 2001], in-
tended as an add-on to the Extended Static Checker for Java (see
[Detlefs et al., 1998] for ESC/Java). Houdini is an annotation assistant that
guesses a large number of possible specification candidates by heuristics and
then uses ESC/Java to verify or refute the individual candidates. Also refer
to [Flanagan, 2002].

Some prototype experiences have been made using techniques of
inductionless induction [Comon, 2001] and rippling [Bundy et al., 1993,
Bundy and Lombart, 1995], for guessing induction invariants and using them
for the treatment of recursion in the verification of (usually) functional pro-
gramming languages.

Finally, our practical sequent calculus approach displays some similari-
ties to program normalisation [Ammarguellat, 1992], since in one particular
interpretation it can be used to construct semantically equivalent programs
in some normal form.

3

1.4 Notation

In this section we briefly summarise the notation used in this paper. In gen-
eral we adopt the logical language and notions like term, formula, model,
state, satisfiable, and valid from [Beckert and Schmitt, 2003, Schmitt, 2000],
with the following notational exceptions. Quantifiers and modalities bind
strong instead of extending far to the right. The precedence order is thus
↔,⊃,∨,∧,¬, ∃ , ∀ , [], 〈〉,

.
=, 6=, <,≤, >,≥. Those signs represent respectively

the logical operators equivalent, implication, or, and, not, existence quanti-
fier, universal quantifier, box operator of dynamic logic, diamond operator,
term equality, term inequality, less relation, less or equal relation, greater
relation, greater or equal relation. >, and ⊥ denote the formula true, resp.
false. In the meta-language we use �,≡, ⇒ , ⇐⇒ to denote the local con-
sequence relation2, local equivalence relation (which is a congruence), meta-
level implication, or meta-level equivalence. Especially note that our binding
preferences imply

(∀i φ) ⊃ ψ = ∀i φ ⊃ ψ 6= ∀i (φ ⊃ ψ)
(〈α〉φ) ⊃ ψ = 〈α〉φ ⊃ ψ 6= 〈α〉(φ ⊃ ψ)

Further, [x 7→ t] denotes the uniform substitution replacing x by t. Simi-
larly, φ[x 7→ t] denotes the result of replacing simultaneously every occurrence
of x in φ by t, i.e. the result of applying the substitution [x 7→ t] to φ. As
suggestive notation, for the semantic modification on x to a of an interpreta-
tion I (or its variable assignment part β, or its program variable state part
s) we write I[x 7→ a]. Then I[x 7→ a] differs from I only at x where it assigns
the value a. In the same context, whenever appropriate, we prefer valI(s, φ)
for the valuation of the expression φ under the interpretation I in the state
s. That there is a possible transition from state s to t when running the
program α is denoted with sρ(α)t. This gives the modal accessibility relation
for the program α as occurring in the definition of the semantics of 〈α〉 and
[α]. If the state s is known from the context and no ambiguities arise, then
“ there is sρ(α)t ” is a short notation for “ there is t with sρ(α)t”, and
similar when t is known from the context.

As a matter of convention, program variables are written in typewriter
x, logical variables in italics x. Additionally, in this paper we will use the
concept of generic variables (written as x) as will be introduced in Sect. 2.2
for simplicity of notation. For a formula φ, FV (φ) denotes the set of free
variables occurring in φ.

2The local consequence relation with local premises Ψ and consequence φ is defined by
Ψ � φ :⇐⇒ for each interpretation (G, ρ, `) for each state s ∈ G (s � Ψ ⇒ s � φ)

4

Chapter 2

Formalisation

In this chapter we formalise the problem of constructing a specification from
an implementation, and impose restrictions on which specifications to prefer,
when several are possible. After illuminating the motivations for choosing
our particular formalisation with a few examples, we introduce some further
terminology.

2.1 Programming Language

Even though we apply the theoretical results of the following sections to Java

[Gosling et al., 1996] (more precisely: J2ME [J2ME, 2003] and JavaCard

[JavaCard, 1999]), they are not limited to deterministic languages but have a
broader applicability1. In order to reflect this we first start with a hypothet-
ical programming language called While for the more formal part of this
paper. We imagine it is a subset of Java with value semantics and primitive
atomic types only, the permitted statements being exclusively while, if,
assignments, and (static) function calls, perhaps of nondeterministic effect.
Despite the language restrictions, While still is Turing-complete. Our ab-
straction serves two purposes: First, it simplifies the notation in this paper.
And second, it defers the treatment of peculiarities of references, aliasing and
compound objects until a thorough overview of the fundamental principles
has been given, hopefully to the advantage of the reader. In a later section, we
then demonstrate which minor extensions facilitate the step to full J2ME.
After all, the programming language does not affect things much in the fol-
lowing, anyway. More or less the only true restriction on the language is to
have a semantics formulated in a dynamic logic.

1which can be of advantage, since nondeterministic effects on a macro level sometimes
play a role even in languages of purely deterministic semantics like Java.

5

2.2 Specifications

For now we assume to know the modifies list2 MV (α) = {x1, . . . , xn}, which
forms the maximum set of program variables or function symbols3 modified
by the program α. We formalise the general goal of this project as follows: For
every program α with modifies list MV (α) = {x1, . . . , xn}, find a “strongest”
formula ψ of dynamic logic such that

� ∀x1
pre . . . xn

pre
(
x1

.
= x1

pre ∧ . . . ∧ xn
.
= xn

pre

︸ ︷︷ ︸

x

.
=x

pre

⊃ [α]ψ
)

(2.1)

Where the notion of a “strongest” such formula means that ψ is a maximum
with respect to some specific preference order ’�’ on formulas. Also, for every
term4 xi in the modifies list MV (α) we provide a new logical variable symbol
xi

pre such that we can refer to the initial state prior to executing α.5 Terms
not in MV (α) of which we thus know that α will never change their value do
not require such a special treatment, since referring to their prestate value is
still possible in the poststate by the same name.

The intuition behind the above defining condition is that we want ψ to
specify every possible transition (run) of α under every possible assignment
of input variables, not just one run or assignment. The x

.
= xpre condition on

the formula serves the purpose of remembering the state prior to executing
α such that the specification ψ may later refer to it for state transitions
depending on the initial state. Here, we refrain from using a built-in ·pre-
operator but rather confine ourselves to basic logic. If we just see xpre as an
ordinary logical variable of a special name, the x

.
= xpre condition permits

us to achieve a similar result without adding a special built-in mechanism.
By-reference arguments and thus instance variables necessitate an explicit

treatment of state transitions via a construct like ·pre variables.

Definition 2.2.1 Any formula ψ that satisfies condition 2.1 is a specifica-
tion of the program α.

Also note the equivalent formulations in Res. A.4.1.

2We will show how to avoid the need to know the modifies list in advance, both from
a theoretical and practical perspective, later on, and defer this to Chapt. 4

3A function symbol f occurs in the modifies list if α changes an array f at any index.
This intuition will be explained more precisely in Sect. 4.1.

4In our case, only program variables or function symbols may occur in MV (α).
5Note that the important information about xi

pre is that it is rigid and new, not that
it is a logical variable. Instead, distinct rigid constants would do as well, saving universal
quantifiers.

6

In order to simplify notation and make the affected formulas more con-
cise, we prefer to use abbreviations in this paper. From now on, instead of
explicitly referencing and managing a list of variables like x1, . . . , xn, we use a
single vectorial or generic variable x to express the same circumstance. Even
though we only provide this intuitive notion, the meaning of the abbreviation
will always be immediate and well-defined. For example, x

.
= xpre abbreviates

x1
.
= x1

pre ∧. . . ∧ xn
.
= xn

pre. Similarly, as a dual subformula for remembering
the poststate, x

.
= xpost will then abbreviate x1

.
= x1

post ∧ . . . ∧ xn
.
= xn

post.
With this notation, condition 2.1 simplifies to

� ∀xpre
(
x
.
= xpre ⊃ [α]ψ

)
(2.2)

Example 2.2.1 As a plausibility check, consider the simple program α

x = x + 1;

It has the following obvious specification

� ∀xpre
(
x
.
= xpre ⊃ [x = x + 1] x

.
= xpre + 1

︸ ︷︷ ︸

ψ

)

(2.3)

Because the program is deterministic and terminates, we can sharpen6 the
statement to

� ∀xpre
(
x
.
= xpre ⊃ 〈x = x + 1〉 x

.
= xpre + 1

︸ ︷︷ ︸

ψ

)

ψ2 := x > xpre is also a specification of α, though “less precise”, and
ψ3 := x 6= xpre is even worse. While ψ4 := x > 0 or ψ5 := x

.
= 5 are not

even specifications of α. The true formula > is admissible as a specification
for every program but does not contain any exciting information about α. �

Usually, it is natural to assume that a specification of a program only talks
about the variables that occur in the program. As far as output variables (like
xpost) are concerned, one would even assume that only those variables that
the program modifies somehow should occur in the specification. However,
in programming languages containing pointers or references (like Java does)
which are thus subject to the aliasing problem, it can be difficult to determine
precisely which variables are not modified. Moreover, even though it appears
natural to restrict variables to occurring ones, it may sometimes be inappro-
priate. If, for example, a programmer knows that his algorithm will run at
least all day long then he should be allowed to specify that, after its termina-
tion, the days count variable will have increased. Most probably, the program

6with knowledge of determinism

7

will not even talk about days or time, but nevertheless such a specification
should be valid. Though, of course, an automatic specification generator can-
not produce such specifications without having access to platform-specific
information. Finally7, runtime strongly depends on the specific system archi-
tecture whose peculiarities are not known to the proof system in the form of
specifications in the first place. But if a programmer knows or if runtime in-
formation is available, it should still be allowed to specify runtime properties.
Even though we do not officially restrict specifications to variables occurring
in the program we usually guarantee that most specifications ψ satisfy the
FV (ψ) ⊆ {xpre,xpost,x} = {xi

pre, xi
post, xi : i = 1, . . . , k}. Then specifica-

tions usually only talk about components of the state that modalities could
directly assign values to.

At first sight, an alternative choice for the defining condition of specifi-
cations could have been

� ∀xpre
(
x
.
= xpre ⊃ 〈α〉ψ

)
(2.4)

Even though this variant appears to be stronger because it includes a ter-
mination assertion, it also has several drawbacks. Now we will examine the
relationship of condition 2.1 and condition 2.4, and briefly mention the con-
sequences of the two choices.

According to condition 2.1, a specification ψ contains information about
what is true after all completions of the program run, if there are some.
However, unlike 〈〉, the modal operator [] does not talk about termination at
all. To some degree, knowledge about termination results from the assertion
� 〈α〉>. Indeed, such an additional assertion would only guarantee that a
program can sometimes terminate, but does not always need to terminate.
For purely deterministic programs, this already is all we need, because if the
single possible run terminates then the program always terminates. However,
nondeterministic and probabilistic languages require a finer treatment of ter-
mination conditions, since there are programs that have one terminating run,
but also several other nonterminating runs under the same input. And then
� 〈α〉φ only says that we can be lucky to experience one particular program
run after which φ holds, but leaves unspecified whether there are other un-
pleasant cases of nonterminating program runs, or terminating program runs
after which φ does not hold, in spite of the same input. Those cases will be
examined further in example 2.2.2 and example 2.2.3 below.

Generally, the modality 〈〉 can be inferred by [α]φ, 〈α〉> � 〈α〉φ. So
given the additional termination assertion � 〈α〉>, – possibly even predi-
cated to specific input argument values – condition 2.1 is more general than

7Apart from the fact that runtime analysis would be undecidable anyway.

8

condition 2.4. Since we want to include the treatment of nondeterministic lan-
guages, we avoid condition 2.4 and prefer condition 2.1 in the general case.
Additionally, programs that do not terminate, or do not terminate under
some inputs, cannot be described with a formula of the form of condition 2.4,
but only of condition 2.1. Especially, if α does not terminate at all, then it
still has a specification

� ∀xpre
(
x
.
= xpre ⊃ [α]⊥

)

An analogous condition would not hold for the 〈〉 version. But we explic-
itly want to include the treatment of such nonterminating programs in our
terminology. At least programs that do not terminate under some, though
not all, inputs occur quite frequently in practical applications. Particularly,
uncaught exceptions give rise to nonterminating – more precisely abruptly
completing – programs. These coherences will be illuminated more explicitly
in the examples below.

Example 2.2.2 The integer division program

z = x / y

respectively the more explicit form

z = 0;
while (x >= y) {

x = x − y ;
z = z + 1;

}

only terminates (or only terminates without error) for y 6= 0 which can
neither be expressed with x

.
= xpre ⊃ 〈α〉ψ nor with x

.
= xpre ⊃ ([α]ψ∧〈α〉>),

but only with x
.
= xpre ⊃ ([α]ψ ∧ (〈α〉> ↔ y 6= 0)) �

Example 2.2.3 Regarding pseudo-random number generators as nondeter-
ministic – for example when abstracting from their implementation – the
following program is essentially nondeterministic.

i = 0;
while (random () < 0 . 5) {

i = i + 1;
}
x = 17;

9

It satisfies x
.
= xpre ⊃ 〈α〉(x

.
= 17) and even satisfies x

.
= xpre ⊃ ([α](x

.
=

17) ∧ 〈α〉>), but still does not always terminate (independent from the
input). Its termination is very likely but never sure, regardless of the input.
So even though after each successful termination x

.
= 17 holds, and even

though there are at least some termination cases, termination does not
always happen. Even worse, it also is difficult to specify precisely what the
termination conditions are.8 Unexpectedly subtle cases like these contribute
to the reasons why we have not stipulated termination assertions as a fixed
part of our notion of specifications. �

2.3 Choosing a Preference Ordering

What we want the strongest specification to achieve is to describe precisely
the input-output behaviour of a program, without concealing changes, and
without inventing untrue changes. If, in a first attempt, we ignore readability
and restrict ourselves to constructing the strongest specifications, the pref-
erence order ’�’ can be chosen as follows.

Definition 2.3.1

φ � ψ :⇐⇒ C(ψ) ⊇ C(φ) ⇐⇒ 9 ψ � φ (2.5)

Where � denotes the local consequence relation (with respect to logical and
program variables).

This directly gives us a partial quasi-order, and thus also a partial order
by passing to the quotient. Unfortunately, this does not result in a total order
on all formulas. Therefore, when comparing two formulas, like specifications,
it is not at all obvious whether there always is the possibility of saying which
one is stronger or even whether there is a joint strongest formula apart from
⊥. Even though there still is no total order on specifications, and there still
is no exciting top element of all formulas, we only need a greatest element of
the specifications. Indeed, it will turn out that there is a computable maximal
ψα within all specifications of α, which is a strongest specification of α: for
example the arithmetic representation of α (which we will use in Res. 3.2.5).

8In real world applications, the distinction between probabilistic Monte Carlo and Las
Vegas algorithms causes similar difficulties with termination conditions like: can terminate,
always terminates, never terminates.

9This follows by reflexive and monotonic. Further C(φ) := {ψ : φ � ψ} is the set of
consequences of φ.

10

Intuitively, the above choice of a preference order has two related aspects
which may serve as a justification for this particular approach: First, if one
specification implies another one, then we will certainly prefer the former one.
Second, if a specification generally has more consequences, then we would
prefer it as well. However, when comparing general sets of consequences it is
easy to say which set contains more only if one set comprises the other.

Also notice that we use local consequence, since formulas that describe
post states seldom hold for every assignment of the logical variables anyway,
but rather constrain the values to some extent. This is because most pro-
grams will not permit every possible outcome. So global consequence would
probably collapse to the void requirement and would not distinguish good
specifications from bad ones.

Example 2.3.1 ψ := x
.
= xpre + 1 does not hold in every state on every

variable assignment. So there are no interpretations and states that globally
satisfy ψ regardless of the variable assignments, because ψ only holds locally
in some states under some particular assignments. Still ψ holds after every
execution of program α from example 2.2.1 which is what specifications are
about. �

We illustrate this aspect and the surrounding concepts a little more in the
following example.

Example 2.3.2 In continuation of example 2.2.1, consider again our simple
program α, and its specification condition 2.3 which we repeat here

� ∀xpre
(
x
.
= xpre ⊃ [x = x + 1] x

.
= xpre + 1

︸ ︷︷ ︸

ψ

)

This specification is stronger than the following four, which are nevertheless
valid specifications of α.

ψ1 = x > xpre

ψ2 = x ≥ xpre + 1

ψ3 = x > xpre ∧ x ∈ Z ∧ xpre ∈ Z

ψ4 = x 6= xpre

then ψ1 � ψ , ψ2 � ψ , ψ3 � ψ , ψ4 � ψ ,

ψ1 � ψ2 , ψ � ψ2 , ψ4 � ψ1 , ψ4 � ψ2 , ψ2 � ψ1

In fact, ψ is the maximal specification w.r.t. � of α (as expected). If,
instead, we had chosen global consequence as the underlying notion for
stronger specifications, then every formula above would be equally strong.

11

We pick, for example, ψ1 and ψ. The condition of global consequence is that
in any interpretation where the one formula is true under all assignments
of logical variables, the other is true under all assignments as well. But if
we choose an interpretation where > and

.
= take their standard meaning

neither x
.
= xpre + 1 nor x > xpre are true under all assignments of xpre. So

there is no proper requirement to satisfy. �

Example 2.3.3 In the last example, the maximal specification did contain
neither more nor less information than the program itself. However, in gen-
eral, specifications contain less, although they only lack irrelevant internal
details. What specifications do not usually talk about, for example, is the
precise sequential order in which the individual operations are executed. Con-
sider the simple program α2

x = x + 1;
y = y − 1;

It has the following obvious (maximal) specification

� ∀xpre ypre
(
x
.
= xpre ∧ y

.
= ypre ⊃

[x = x + 1; y = y− 1] (x
.
= xpre + 1 ∧ y

.
= ypre − 1)

︸ ︷︷ ︸

ψ

)

(2.6)

Our notion of specification only characterises the input-output behaviour
of a program, not its implementation. For example condition 2.6 also is a
maximal specification of

y = y − 1;
x = x + 1;

and of

y = y + 1;
x = x + 1;
y = y − 2;

and if x, y ∈ Z even of

int y0 = y ;
i f (y > x) {

y = y + 2;
} else {

y = y − 1;
}
x = x + 1;

12

i f (y0 >= x) {
y = y − 3;

}

This example also demonstrates incomparable specifications. The following
two specifications are weaker than ψ but incomparable to each other.

ψ1 = x = xpre + 1

ψ2 = y = ypre − 1

⇒ ψ1 � ψ , ψ2 � ψ , ψ1 � ψ2 , ψ2 � ψ1

�

Example 2.3.4 Even more than the last example, this one shows what is
hidden from the specification of a program in comparison to the full de-
tail of the implementation. The following three programs all have equivalent
maximal specifications.

{
int t ;
t = x ;
x = y ;
y = t ;

}

Reversible computing version:

x = x + y ;
y = y − x ;
x = x + y ;
y = −y ;

Geometrically inspired version:

{
int d = Math . abs (x − y) ;
i f (x < y) {

x = x + d ;
y = y − d ;

} else {
x = x − d ;
y = y + d ;

}
}

13

which all satisfy

� ∀xpre ypre
(
x
.
= xpre ∧ y

.
= ypre ⊃

[α]x = ypre ∧ y = xpre
)

�

2.4 Terminology

In this section we will introduce some basic terminological notions which will
be needed in the following.

Definition 2.4.1 (Semantically relatively rigid / Invariant) An expres-
sion10 φ is called rigid for the program α or invariant under α if it has
the same value prior to and after executing α, i.e.

for each state s for each state t
(
sρ(α)t ⇒ val(s, φ) = val(t, φ)

)

Remark 2.4.2 In particular, an expression is rigid for α if it is only build
of components that are rigid for α.

Definition 2.4.3 (Semantically rigid) An expression φ is called semanti-
cally rigid if it has the same value in all worlds, i.e.

for each state s for each state t val(s, φ) = val(t, φ)

Remark 2.4.4 Especially, an expression is rigid if it is only build of rigid
constituents.

Definition 2.4.5 (Syntactically rigid) A (function) symbol that the syntac-
tic vocabulary classifies a priori as having a value that is independent from the
particular state is (syntactically) rigid. In analogy to the semantical defini-
tions, expressions that are only composed of syntactically rigid atomic terms
are called syntactically rigid. Contrary to program variables which are non-
rigid constants, logical variables are rigid by definition.

The relationship between the various notions of rigidity is as follows.

10We use expressions as a unifying notion of elements of a suitable term-algebra like
formulas or terms of dynamic logic.

14

Remark 2.4.6 Let φ be an expression and α an arbitrary program.
φ syntactically rigid

⇒ φ semantically rigid
⇒ φ rigid for α

Proof: Directly by definition. �

Note that most of our results only require formulas that are rigid for the
specific program being analysed. However, unlike semantical rigidity, syntac-
tical rigidity bears no decidability problems because it emanates from the
declaration of symbols.

During the proofs in this work, there is a need for specifications of a
slightly different defining condition. While the initial notion of specifications
in Res. 2.2.1 has a strong intuitive justification, there is an alternative char-
acterisation, which permits a simpler generalisation to characterisations of
maximal specifications. This alternative characterisation of program specifi-
cations will constitute an important ingredient, both in the theoretical result
Res. 3.2.5 and in the practical result Res. 5.5.1. Therefore, we introduce spe-
cial names for these concepts and collect some properties in the following
sections.

Definition 2.4.7 (Exterior form specification) Any formula ψ that satisfies
the following condition is an exterior specification of the program α.

� ∀xpre ∀xpost
(

x
.
= xpre ⊃

(
〈α〉(x

.
= xpost) ⊃ ψ

))

(2.7)

The antecedent placement of the 〈〉 modality in condition 2.7 – in combina-
tion with the state export via xpost – has the effect of a generic program run.
The state described by xpost is existentially quantified, with this quantifica-
tion placed in the antecedent of an implication. ψ only knows about xpost

that it is some unknown or anonymous state that can be reached by execut-
ing α in some way. So whatever ψ knows about some such anonymous state,
it effectively knows about all such states, since it has no way to influence
which particular state the 〈〉 operator reaches.

With this being said, the intuition of the above condition is that if ψ can
say something about the generic program run, i.e. just with knowledge of the
fact that there can be some program run leading to some anonymous xpost,
then it eventually holds for any program run. And things that hold of all
program runs are what is called a specification of the program.

Example 2.4.1 In continuation of example 2.2.1, we remember that the
simple increment program has the following obvious specification

� ∀xpre
(
x
.
= xpre ⊃ [x = x + 1] x

.
= xpre + 1

︸ ︷︷ ︸

ψ

)

15

Furthermore, α has the following exterior specification

� ∀xpre ∀xpost
(

x
.
= xpre ⊃

(
〈x = x + 1〉(x

.
= xpost) ⊃ xpost .

= xpre + 1
︸ ︷︷ ︸

ψ′

))

We observe that the difference between ψ and ψ′ is just the way of referring
to the poststate. This difference results from the different levels of modality.

�

Example 2.4.2 As an example to illustrate the concept of generic program
runs, let us examine a possible translation into an ordinary first-order anal-
ogon. This “translation” only leads to informal language. Assume that ψ is
a formula that only contains xpost as free variables.

〈α〉(x
.
= xpost) ⊃ ψ

=̂ (there is twith sρ(α)t t � x
.
= xpost) ⇒ s � ψ

=̂ for each twith sρ(α)t (t � x
.
= xpost ⇒ s � ψ)

=̂ for each twith sρ(α)t (t � x
.
= xpost ⇒ t � ψ)

=̂ for each twith sρ(α)t (t � x
.
= xpost ⊃ ψ)

Thereby we can see how the existential statement in the antecedent
of a condition corresponds to a universal statement on the top-level
of positive polarity. The xpost variables achieve an export of the state in-
formation within the scope of the existential statement to the succedent ψ. �

Be aware that exterior specifications forecast a subtle change in the use
of modalities. While in Res. 2.2.1 the prevailing modality has been [] and a
considerable amount of motivation has been spent to justify its preference
over 〈〉 from condition 2.4, now Res. 2.4.7 re-establishes the use of 〈〉. But the
important difference is that 〈〉 occurs with negative polarity in condition 2.7,
thereby raising hope that there could be a connection with the occurrence
of [] with positive polarity in condition 2.1. At least for rigid specifications,
this hope will not be shattered.

Some specifications only describe the upcoming state change when eval-
uated prior to executing α, while other specifications only portray the state
change in retrospect when evaluated after executing α. Particularly good
specifications, however, ensure that the specification formula is not restricted
to holding at a particular point in time, but describes the state change per-
formed by α universally and independently from the current context. Those
specifications characterise the state change equally precise in the prestate as

16

well as in the poststate. This is important, because some proofs in this paper
take advantage of such a uniform systematic treatment of pre- and poststate.
We will see that specifications can always be cast into a form which respects a
homogeneous treatment of pre- and poststate values, which we call standard
form.

Definition 2.4.8 (Standard form) Any formula ψ that satisfies the following
two equivalent conditions is a standard form specification

� ∀xpre
(
x
.
= xpre ⊃

[α]∀xpost (x
.
= xpost ⊃ ψ)

)

� ∀xpre
(
x
.
= xpre ⊃

[α]∃xpost (x
.
= xpost ∧ ψ)

)

Standard forms are a minor variation of ordinary specifications. Further-
more, both variants, defining condition 2.1 and condition 2.7 can be united
and (in the case of rigidity for α) expressed equivalently by standard form
specifications. In Res. 3.1.6 we will finally explain more precisely that all the
variants are essentially equivalent, anyhow.

Example 2.4.3 In continuation of example 2.4.1, the specification of the
simple increment program can be transformed to the following standard form
specification

� ∀xpre
(
x
.
= xpre ⊃

[x = x + 1]∀xpost (x
.
= xpost ⊃ xpost .

= xpre + 1
︸ ︷︷ ︸

ψ′′

)
)

Here, we find that the exterior specification ψ′ and the standard form speci-
fication ψ′′ are equal, despite their distinct defining conditions. Even though
this is the normal “reasonable” case, exterior and standard form specifica-
tions do not necessarily coincide. For example, x

.
= xpre + 1 will still be an

(unusual) standard form specification but not an exterior specification of α.
This is because of the different levels of modality where the program variable
x occurs in both defining conditions.

Standard form specification are more systematic though less readable
than ordinary specifications. Furthermore, they avoid the asymmetric
naming convention of calling prestate values x in prestates, but decorating
prestate values with xpre in poststates, while calling poststate values again x
in poststates. Instead the proper specification part will refer to the pre- and
poststate values equally explicitly. Thus such standard form specifications
can be removed from their context more easily without disturbing their

17

reference to the surroundings, which is why we prefer to use standard form
specifications in our proofs for simplicity. �

By now, the essential notions have been presented. Unfortunately, though,
there still is a need for some technical remarks concerning the translation
of the different kinds of specifications. Those transformations rely on the
presence of rigidity.

Remark 2.4.9 For standard form specifications, there is no need to con-
tain x as a (free) variable, since previous and post state values of x can be
addressed in rigid variables xpre and xpost where they have been memorised.
And occurrences of x in between (i.e. within modalities of the specification
ψ) could have been called x′ just as well.

Some of our results implicitly assume this purification has been performed,
because they would require technical acrobatics otherwise.

Remark 2.4.10 We implicitly assume that standard form specifications do
not contain x, which is no loss of generality by Res. 2.4.9.

There is one more terminologically simplifying concept that we need for
the concise formulation of results. Since in some situations, like Res. A.1.2,
the possible variations of formulas have the same justification, we do not
want to treat them disparately or take one as original and the other as
derived.11 Instead, we write φ(z), and φ(t) respectively for both variations
of φ having z or t, respectively at corresponding positions. Formally, this
intuitive notion can be made precise by introducing an original variable λ1

in φ, which plays the role of a formal parameter of the meta-language, and
by defining φ(z) := φ[λ1 7→ z], resp. φ(t) := φ[λ1 7→ t].

11In fact, in the case of Res. A.1.2, both, z and t can be transformed to one another
with generous uniform substitutions like [z 7→ t] and [t 7→ z]

18

Chapter 3

Computability Analysis

In this chapter, we analyse the problem of specification construction from
a theoretical perspective. We will prove that (up to local equivalence) the
strongest specification of an arbitrary program exists and can be constructed
algorithmically. For that proof and the following course of this paper, we first
introduce some key coherences, which correlate statements about different
levels of modality.

3.1 Hop States

Talking about states other than the current requires a way of rescuing infor-
mation from states over modal operator boundaries. For that purpose, the
state-dependent non-rigid information (for example program variables) has
to be emulated with rigid logical variables. In doing so replacements will be
carried out in the formulas. Those, indeed, should not perform semantical
free flight, but exhibit the same meaning as the original formulas. On that
account, a relationship between the evaluation of formulas with replacements
and corresponding evaluations of the unchanged formulas has to be estab-
lished. Such a kind of substitution procedure must not deploy surrogates
beyond arbitrary modal operators, because occurrences of the same x on dif-
ferent levels of quantification may denote different values and thus different
rigid correspondents. From a syntactical point of view such descriptions need
a concept of substitutions that surrender in the face of modalities. However,
instead of pursuing this line, we prefer a less technical approach and rely on
Res. 2.4.9 to rename conflicting occurrences of x.

Example 3.1.1 φ := x
.
= 0 ⊃ [x = x + 1]x

.
= 1 is true in all states, but

φ(i) := i
.
= 0 ⊃ [x = x + 1]i

.
= 1 is unsatisfiable with i being a (rigid)

19

logical variable. �

Remark 3.1.1 (Rigidify) With the help of Res. 2.4.9 the following state-
ments are true

(

∀i
(
i
.
= x ⊃ φ(i)

))

≡ φ(x)

� ∀i
(
i
.
= x ⊃ (φ(i)↔ φ(x))

)

Proof: The first is a direct consequence of Res. A.1.2, and the second then
follows. �

For examining the relationship of propositions on different levels of modal-
ity, we now show an auxiliary result that correlates preconditions in Hoare-
logic style with the corresponding conditions on the previous state in post-
conditions. It enables us to talk about the previous state in the posterior
state.

Lemma 3.1.2 (Pushforward) If φ(i) is rigid for α (and i is fresh), and t
an arbitrary term, then for ? ∈ {∨,⊃}

φ(x) ? [α]ψ ≡ ∀i
(
i
.
= x ⊃ [α](φ(i) ? ψ)

)

Proof: By Res. 3.1.1 it is

� ∀i
(

i
.
= x ⊃

(
φ(x)↔ φ(i)

))

congruence
⇒ � ∀i

(

i
.
= x ⊃

(
(φ(x) ? [α]ψ)↔ (φ(i) ? [α]ψ)

))

Res. A.2.1
⇐⇒ � ∀i

(

i
.
= x ⊃

(
(φ(x) ? [α]ψ)↔ [α](φ(i) ? ψ)

))

⇒ � ∀i
((
i
.
= x ⊃ (φ(x) ? [α]ψ)

)
↔

(
i
.
= x ⊃ [α](φ(i) ? ψ)

))

i/∈FV ({φ(x),α,ψ})
⇒ � ∀i

(

(φ(x) ? [α]ψ)↔
(
i
.
= x ⊃ [α](φ(i) ? ψ)

))

Res. A.3.1
⇒ � (φ(x) ? [α]ψ)↔ ∀i

(
i
.
= x ⊃ [α](φ(i) ? ψ)

)

�

Corollary 3.1.3 (Pushforward) If φ(xpre) is rigid for α, then for ? ∈
{∨,⊃}

� ∀xpre ∀xpost
(

x
.
= xpre ⊃

(
(φ(x) ? [α]ψ) ↔ [α](φ(xpre) ? ψ)

))

20

Proof: By congruence, this is a direct consequence of Res. 3.1.2, subject to
the additional relativising condition x

.
= xpre. Thereby note that quantifier

transposition is possible for xpre. �

This observation shows that there is no restriction due to our decision not
to consider explicit separate preconditions as part of the specification (no
pairs of precondition and postcondition, apart from x

.
= xpre), since the

postcondition ψ under the box still can catch up.
From this result we can further conclude that, in principle, there is no need

to distinguish sets of several program specifications1 from a single program
specification, since both can be translated into one another. In particular,
this means that we do not lose generality when restricting attention to a
single specification.

Corollary 3.1.4 (Finite) sets of specifications are equivalent to a single
specification by

� ∀xpre
(

x
.
= xpre ⊃

(∧

k(φk(x) ⊃ [α]ψk) ↔ [α]
(∧

k(φk(x
pre) ⊃ ψk)

)))

Proof: by using

(A↔ B) ∧ (C ↔ D) � (A ∧ C)↔ (B ∧D)

[α]A ∧ [α]B ⇐⇒ [α](A ∧ B)

Provided determinism, the same result holds true for 〈〉 operators, when using

〈α〉A ∧ 〈α〉B ⇐⇒ 〈α〉(A ∧ B)

�

Now we state and prove a very useful method of referring to the state
within the scope of a modal operator from outside, thereby trespassing the
state transition barrier. In a certain way we export a state from under a
modal operator. This result, which is the converse of Res. 3.1.3, then allows
us to talk about a generic post state already in the previous state. Talking
about that generic poststate from under the 〈〉 modality condition still is
equivalent to speaking about all states in a [] modality, according to the next
result. This constitutes the key observation. It heralds a creeping transition
from [] to 〈〉 modalities, in the spirit of exterior specifications.

1A set of program specifications for a single program describes multiple cases of dif-
ferent state transitions, depending on the particular precondition satisfied. Thus they are
implicitly conjunctively connected.

21

Lemma 3.1.5 (Pullback) If ψ is rigid for α (and i does not occur within
the formula φ, or α), then

[α]
(
φ ⊃ ∀i (i

.
= x ⊃ ψ)

)
≡ ∀i

(
〈α〉(φ ∧ i

.
= x) ⊃ ψ

)

Proof:

[α]
(
φ ⊃ ∀i (i

.
= x ⊃ ψ)

)

i/∈FV (φ)
≡ [α]∀i

(
φ ∧ i

.
= x ⊃ ψ

)

i/∈α,constant domain
≡ ∀i [α]

(
φ ∧ i

.
= x ⊃ ψ

)

≡ ∀i [α]
(
¬(φ ∧ i

.
= x) ∨ ψ

)

Res. A.2.1
≡ ∀i

(
[α]¬(φ ∧ i

.
= x) ∨ ψ

)

≡ ∀i
(
¬〈α〉(φ ∧ i

.
= x) ∨ ψ

)

≡ ∀i
(
〈α〉(φ ∧ i

.
= x) ⊃ ψ

)

�

From this fact, we can establish a translation between standard form
specifications of Res. 2.4.8 and the exterior specifications from Res. 2.4.7.
Standard form specifications are just a more systematic variant of the initial
notion of specifications from Res. 2.2.1 with their intuitive motivation. And
since theoretical and practical approaches presented later will be able to
produce exterior specifications, it is important that the following result finally
reunites the distinct variants of defining conditions for specifications.

Corollary 3.1.6 If ψ is rigid for α, then ψ is a standard form specification
of α (c.f. Res. 2.4.8) ⇐⇒ ψ is an exterior specification of α (c.f. Res. 2.4.7).

Proof: Using Res. 3.1.5 with φ := >, i := xpost applied to the marked
part we can conclude

� ∀xpre ∀xpost

(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ⊃ ψ(xpost)

︸ ︷︷ ︸

≡[α]ψ(x)

)
)

Note that x
.
= xpre does not contain xpost. Therefore the quantifier ∀xpost

can be rearranged correspondingly. �

22

3.2 Maximal Specifications

Having defined what we actually aim to find as program specifications, we will
now examine whether there is a way of constructing such specifications. It will
be shown that specifications can be derived from the logical representation
of a (usually imperative) program. Whereas the logical representations in
turn can be constructed algorithmically from the program’s source code –
or, in particular in the case of Java, just as well from the compiled binary
representation. We start by translating programs to logic, which is only one
possible way of achieving this.

Claim 3.2.1 (Translating programs to logic) For every program α
there is a (standard form) specification ψα of α that is rigid for α2, and
even3

� ∀xpre ∀xpost
(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ↔ ψα)

)
(3.1)

Proof: Either prove by a general result shown for example in
[Schlager, 2000], or by explicit argument: Let f : Nn → Nm be the func-
tion computed by α. Then f has for example an arithmetic representation,
i.e. an arithmetic formula

ψα = ψα(x
pre,xpost)

over {¬,∧,∨, ∀ , ∃ ,
.
=,+, ·} ∪N such that

� ∀xpre ∀xpost (ψα ↔ f(xpre)
.
= xpost)

⇒ � ∀xpre ∀xpost
(
x
.
= xpre ⊃ (f(x)

.
= (xpost)↔ ψα)

)

⇒ � ∀xpre ∀xpost
(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost)↔ ψα)

)

This proves the conjecture, and therefore ψα is a specification by Res. 3.1.6.4

�

Note that this translation results in a first-order arithmetic formula over
natural numbers, but anything comparably strong (like for example dynamic
logic) would have been suitable as well. So there are no miracles here. We
cannot translate programs into pure first-order logic without “built-in” inte-
gers. One particular construction trick, again proving the above result, plays
a role in the practical approach as well, which is why it comes as a separate
claim.

2The usual case will even be FV (ψα) ⊆ {xpre,xpost}, but this is not a necessary
consequence.

3Note the similarity with condition 2.7 of exterior specifications.
4For ψα we could just as well choose the (perhaps second-order) formula resulting from

a transformation of α into a functional specification and further on to logic.

23

Claim 3.2.2 In α replace every program variable x by x′ and call the result-
ing program α′. Then Res. 3.2.1 is true with

ψα := 〈x′ = xpre〉(〈α′〉(xpost .= x′))

Proof: This choice for ψα says that states described by xpost are reachable
by α′ thus (apart from variable renaming) by α, when starting in a state
described by xpre. In the end, this is all one can say about the general program
run, namely that we have finally reached any one of the states that we could
possibly reach by executing the program (starting in the very same particular
state under consideration). By construction, it is immediate (Res. A.4.2) that
this ψα is rigid for α because it does not share anything modifiable with α.
Now to the proof of condition 3.1. Let s be any state with s � x

.
= xpre.

1. If s � 〈α〉(x
.
= xpost) ⇒ there is sρ(α)t t � x

.
= xpost. Then af-

ter 〈x′ = xpre〉5, s is “the same” starting point for both, α and α′.
More precisely: because of the mere variable renaming [x 7→ x′],
sρ(α)t implies with t′ := t[x 7→ t(x′)][x′ 7→ t(x)] that sρ(α′)t′ and t′ �

xpost .= x′.

2. If s 2 〈α〉(x .
= xpost) ⇒ for each sρ(α)t t 2 x

.
= xpost. Then let

sρ(x′ = xpre)s′ and s′ρ(α′)t. Because of the variable renaming then
with t := t′[x 7→ t′(x′)][x′ 7→ t′(x)] it is sρ(α)t and thus t 2 xpost .= x,
but then t′ 2 xpost .= x′ by construction of t from t′.

�

Corollary 3.2.3 The condition 3.1 is equivalent to

� ∀xpre ∀xpost
((

x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ⊃ ψα)

)

∧
(
ψα ⊃ (x

.
= xpre ⊃ 〈α〉(x

.
= xpost))

))

When ψα is rigid for α, then condition 3.1 is equivalent to

� ∀xpre ∀xpost

(
〈x = xpre〉〈α〉(x

.
= xpost) ↔ ψα

)
(3.2)

while further equivalent formulations of condition 3.1 then result from

x
.
= xpre ⊃ (〈α〉(x

.
= xpost)↔ ψα)

≡ x
.
= xpre ⊃ 〈α〉(x

.
= xpost ↔ ψα)

≡
(
x
.
= xpre ⊃ [α](x

.
= xpost ⊃ ψα)

)
∧

(
ψα ⊃ (x

.
= xpre ⊃ 〈α〉(x

.
= xpost))

)

5We still call the state after this modality s, for simplicity

24

Proof:

x
.
= xpre ⊃ (〈α〉(x

.
= xpost)↔ ψα)

≡ x
.
= xpre ⊃

(
(〈α〉(x

.
= xpost) ⊃ ψα) ∧ (ψα ⊃ 〈α〉(x

.
= xpost))

)

≡
(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ⊃ ψα)

)

∧
(
x
.
= xpre ⊃ (ψα ⊃ 〈α〉(x

.
= xpost))

)

≡
(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ⊃ ψα)

)

∧
(
x
.
= xpre ∧ ψα ⊃ 〈α〉(x

.
= xpost)

)

≡
(
x
.
= xpre ⊃ (〈α〉(x

.
= xpost) ⊃ ψα)

)

∧
(
ψα ⊃ (x

.
= xpre ⊃ 〈α〉(x

.
= xpost))

)

Res. 3.1.6
≡

(
x
.
= xpre ⊃ [α](x

.
= xpost ⊃ ψα)

)

∧
(
ψα ⊃ (x

.
= xpre ⊃ 〈α〉x

.
= xpost)

)

And

x
.
= xpre ⊃ (〈α〉x

.
= xpost ↔ ψα)

Res. A.2.1
≡ x

.
= xpre ⊃ 〈α〉(x

.
= xpost ↔ ψα)

The equivalences marked with propositions rely on ψα being rigid. The re-
maining equivalence with condition 3.2 follows from Res. A.1.3 when keeping
in mind that ψα is rigid for α. Thus the particular value of x ∈ MV (α) cannot
make a difference for ψα, so moving it in and out of the scope of 〈x = xpre〉
does not change anything6. �

The part x
.
= xpre ⊃ [α](x

.
= xpost ⊃ ψα) of the last formula from Res. 3.2.3

intuitively says that when running α from the state memorised by x
.
= xpre,

then the specification formula is true after all possible program runs – as-
suming the (universally quantified) final state variables have been assigned
appropriately.
The other part ψα ⊃ (x

.
= xpre ⊃ 〈α〉x

.
= xpost) from Res. 3.2.3 says that

whenever the specification formula is satisfied there is – given a corresponding
assignment of the input variables – a program run of the expected result.

Now that we have a computable translation of a program, we can show
that such a translation really is “the” strongest specification for a program.

Remark 3.2.4 In the following, for a program α, ψα will always denote any
formula satisfying condition 3.1 including the additional assertion that it is
rigid for α.

6Because if ψα was sensitive to its placement in relation to 〈x = x
pre〉, it would obvi-

ously notice changes of x, and thus could never have been rigid for α

25

Proposition 3.2.5 (Strongest Specifications) ψα is a maximum with
respect to ’�’ of all (standard form) specifications of α.

Proof: Let φ be a (standard form) specification of α. We have to show that
φ � ψα, i.e.

� ∀xpre ∀xpost
(
(x

.
= xpre ⊃ ψα) ⊃ (x

.
= xpre ⊃ φ)

)

This is equivalent to proving that

� ∀xpre ∀xpost
(
x
.
= xpre ⊃ (ψα ⊃ φ)

)

Since φ is a (standard form) specification,

� ∀xpre ∀xpost
(
x
.
= xpre ⊃ [α](x

.
= xpost ⊃ φ)

)

Res. 3.1.6
⇐⇒ � ∀xpre ∀xpost

(
x
.
= xpre ⊃ (〈α〉x

.
= xpost ⊃ φ)

)

By premises, ψα satisfies condition 3.1

� ∀xpre ∀xpost
(
x
.
= xpre ⊃ (〈α〉x

.
= xpost ↔ ψα)

)

Therefore when combining the above formulas by congruence we get

� ∀xpre ∀xpost
(
x
.
= xpre ⊃ (ψα ⊃ φ)

)

�

At this stage we have shown that there is an effective procedure for com-
puting the strongest specification of any program. From a theoretical per-
spective, the specification computation problem is solved. However the con-
struction in proof Res. 3.2.1 reveals that the specification thus produced is
only a recoding of the source code and as such does not really offer more
insight than the source code itself, nor necessarily attains better readabil-
ity. For this reason it seems adequate to look out for practical approaches
with a stronger focus on readability and beneficial use than on generality. In
Chapt. 5 we present one approach based on a sequent calculus.

26

Chapter 4

The Modifies List

In this chapter, we investigate the problem of describing the previous state in
object-oriented languages. Unlike with the While programming language,
Java programs can modify an unbounded number of memory locations by
following references in dynamic data structures. Strongest specifications have
to describe the change for all memory locations, where the new values gener-
ally depend on the old values. How the previous state values of the unlimited
set of possibly modified locations can be memorised for the specification will
be examined next.

4.1 Generic Modifies List

Having provided the feasibility analysis and theoretical solutions for auto-
matic specification construction, we relieve of the burden of the While pro-
gramming language imagined so far, and float back to the real world of
object-oriented programming languages. In this section we address the cen-
tral problem of the modifies list MV (α). Throughout our analysis we have
made use of this maximum list of terms (or locations) that the program un-
der consideration can possibly modify. Now we examine methods to avoid
the need for this a priori knowledge. Of course, determining the smallest
modifies list is undecidable, but reasonable approximations will suffice for
our purpose.

Somewhat contrary to applications of the modifies list in proof techniques
(like [Beckert and Schmitt, 2003]), isolating the modified memory locations
as narrowly as possible is of less impact here. What’s rather more important,
is a concise description of every state element that can possibly be modified
by the program, such that no information about the previous state disappears
when moving to the poststate.

27

In case of a programming language like While with value semantics on
atomic types and without pointers, a conservative estimation of the modifies
list can be computed very easily. The set of all program variables occurring
in the program’s source – including all method calls per open embedding1

– can be used as the modifies list. It is finite because the program is, and
it satisfies our needs as nothing else can change. Because of the absence of
difficulties like aliasing or reference navigation, we could even restrict this set
to variables really occurring on the left hand side of an assignment. However,
programming languages with pointers or compound types like record types
or arrays etc. complicate things.

Example 4.1.1 The following code fragment performs a list traversion and
modifies more than just the occurring variables root, n, n.x, n.next but
also root.next.x, root.next.next.x, etc. Here we use empty as an end of
list marker.

Node n = root ;
while (n != empty) {

n . x = n . x + 1;
n = n . next ;

}

�

Example 4.1.2 To illustrate peculiarities of aliasing, we examine a second
example. The following program modifies more than just the object o and
o.x occurring in the source code, but also y.x. Nevertheless, mentioning
both, o and y, often may not be convenient, especially in the presence of the
inferred knowledge that o

.
= y holds in the poststate.

o = y ;
o . x = 7;

�

With the above difficulties in mind, we start a systematic treatment of the
modifies list in the presence of (most) features of modern object-oriented pro-
gramming languages like Java. From the example 4.1.1 it is immediate that
the set of memory locations modified by a program is generally unbounded.
Even though finite programs will only alter a finite amount of space in finite
time, the termination time and thus the list of modified memory locations is

1recursion is no problem for mere variable occurrence analysis

28

generally unknown a priori, and could well exceed every finite limit. Speci-
fications targeting at a description of every possible program run under all
inputs therefore have to deal with an unbounded list of modified memory
locations. But finite formulas only can attempt to achieve this with finite
means. So we have to make sure there still is a finite description of the un-
bounded changes. And there must be one because the program is a finite
description, including a (hidden complex) description of the state elements.

Since every program has an equivalent in the While programming lan-
guage, we could – in principle – even compute a surrogate of the finite descrip-
tions from this translation.2 But apart from the fact that the inverse transla-
tion back to, say, Java has to be achieved as well, we would certainly lose the
programmer’s intuition of what happens in between and what the result says
about the original program. Furthermore, unlike pure While programs, pro-
grams implemented in Java may produce an unbounded output by following
object reference cascades in dynamic data structures. These unbounded data
structures cannot even be described with (finite) arrays without pointers,
but rather require computable encoding into arbitrary sized natural num-
bers. Thus those reduction attempts would deviate unnecessarily far from
the actual program and its terminology. Therefore we prefer to take a more
direct approach. Then we will not have to leave the programming language
in favour of another representation in a totally different programming model,
just because describing modifies lists finitely would be easier.

Basic dynamic logic works with purely functional signatures, on the logic
layer. Thus we decide to embed features of object-oriented programming lan-
guages into a functional signature for simplicity of concepts. An extension
of dynamic logic avoiding this reformulation is straightforward but promises
no further insight on the essence of the subject. The programming language
itself (i.e. the layer of programs in modal operators) undergoes no change,
of course, but remains object-oriented as expected. The relation between ad-
vanced concepts of the programming language and the logical signature is as
follows: Classes give rise to types, program variables occur as 0-ary (constant)
function symbols, object attributes o.v occur as unary function symbols v(o),
and n-dimensional arrays occur as n-ary function symbols a(i1, . . . , in) for
a[i1, . . . , in]. See [Beckert and Schmitt, 2003] for more details on the program

2We can even deduce that – depending on the number of the dedicated input and
output variables – there will be a constant bound for the size of the modifies list regardless
of the specific program at hand and its (original) local variables. This is true because
every program has a translation for the Turing machine whose mechanism can in turn
be simulated with a finite and constant number of variables in the While programming
language (with a single proper loop). But the modifies list will still describe a possibly
unbounded change by the program.

29

Table 4.1: Equality translation and quantification order for different types of
program variables.
Form Type Quantification Equality
x primitive type ∀y x

.
= y

a array ∀Y :function ∀i :N a(i)
.
= Y (i) 3

o.v object attribute ∀Y :function ∀o :object v(o)
.
= Y (o)

o reference ∀y o
.
= y

logic.
Now, when we boldly include a function symbol f resulting from an ob-

ject attribute or array into the modifies list MV (α) just like ordinary local
program variables, there is a semantical problem. What would the formula
x
.
= xpre resulting from the modifies list mean then? It would contain a term

f
.
= fpre involving a (still undefined) equality on functions. What we want to

achieve in such a situation, is that we have a term remembering the previous
state which – in the case of an array or object attribute – consists of the
values at each single index. Therefore we define equality pointwise.

Definition 4.1.1 For function symbols f and g of the same arity and type,
we define equality on functions as

f
.
= g := ∀i f(i)

.
= g(i)

and similarly for higher arities.

Table 4.1 gives an overview of the resulting equality translations for all
types of program variables. Notice that now the quantifier4 prefix of the form
∀xpre occurring in the defining condition 2.1 of specifications can still contain
higher-order quantifiers5, if MV (α) contains a function symbol as resulting
from an array or object attribute. We will address this problem in the next
section.

With this translation of equality on functions we have a finite description
of the (maximum) set of state elements modified. We could simply gather each

3Especially arrays allow another natural approach using memory(a, i) instead of a(i)
as a translation. Then Java array reference copy semantics can be modelled directly. But
since for specification computation concerns this choice is of minor impact, we do not
pursuit this line of thought.

4Remember that ∀xpre is an abbreviation for ∀x
pre . . . xn

pre

5In our notation, higher-order quantifiers are hinted at with capital letter variables.
In Sect. 4.2 we will see how these particular quantifiers can be reduced to first-order
quantifiers.

30

object attribute, array, or general program variable6 referenced in the whole
program, into the modifies list MV (α). Then a formula like x

.
= xpre resulting

from MV (α) gives rise to a finite description of the possible modifications.
More precisely, x

.
= xpre then remembers the full modifiable state prior to

the execution of α. So we also have a finite description of a very conservative
estimation of the memory locations modifiable by α. The specification has
the additional task of describing in a finite way not only what, but also how
precisely, it changes. That this is possible is evident from Res. 3.2.1 when
complete reference to the previous state (expressed in x

.
= xpre) is available.

Example 4.1.3 Continuing example 4.1.1 we get

MV (α) = {x}
(
∪ {root, next}

)

x
.
= xpre := root

.
= rootpre ∧ x

.
= xpre ∧ next

.
= nextpre

= root
.
= rootpre ∧ ∀o x(o)

.
= xpre(o) ∧ ∀o next(o)

.
= nextpre(o)

So the specification condition will be

� ∀rootpre xpre nextpre

(
root

.
= rootpre ∧ ∀o x(o)

.
= xpre(o) ∧ ∀o next(o)

.
= nextpre(o) ⊃ [α]ψ

)

and the strongest specification is

ψ := ∀o
(
reachable(root, o) ⊃ x(o)

.
= xpre(o) + 1

)
∧ nonfin

reachable(x, y) := 〈while(x 6= y)x = x.next〉>

nonfin := reachable(root, empty)

The condition nonfin especially guarantees that the specification is false
for infinite lists or cyclic lists, in which case the list traversion does not
terminate such that the strongest specification should then be ⊥. �

4.2 Lowering Higher-Order Logic

In the last section we have seen that there is a finite description of the (max-
imally) modified state elements and corresponding terms for remembering
the previous state, in second-order logic. Now we examine methods for get-
ting rid of those second-order parts and thus show that they do not impose
further limitations on decidability, completeness, etc. We will see that our

6of which there is only a finite number

31

second-order formula ingredients are simple enough to possess an equivalent
first-order variant without loss of generality.

For this purpose we first note that we only introduce higher-order quan-
tifiers in the universal quantifier prefix of the formula on top-level. By per-
mutation of these universal quantifiers the higher-order quantifiers can be
moved to the top-level in front of the formula7. Then, by definition of en-
tailment, we can dispose of the higher-order quantifiers by constantification
resp. Skolemisation:

� ∀F :function φ ⇐⇒ � φ[F 7→ f]

where f denotes a new constant function symbol for the higher-order function
variable F . So even though ∀F : function φ and φ[F 7→ f] are not locally
equivalent, their property of being a logical truth is.8 And that one is a logical
truth if and only if the other is, justifies the transformation for the central
aspects Res. 2.2.1 and Res. 3.2.1, which are based on logical truth.

4.3 Practical Treatment

For practical applications several approaches for dealing with the modifies
list are conceivable. These are

• to make an explicit separate pre-processing step to compute a conser-
vative estimation of the modifies list.

• to use every existing program variable, object attribute, etc.

• to start a special proof attempt with the empty modifies list9, and to
restart the process with a modifies list accumulated from the left hand
sides of the affected state change assignments occurring in the resulting
specification of the first run.

• to prefer a more implicit treatment of the modifies list by using a built-
in ·pre-operator whenever necessary.

7Then the formula is in Π1
1 form.

8In other words, the transition from ∀F :function φ to φ[F 7→ f] is validity-preserving.
9More precisely: to introduce a constant symbol M of type formula, which a proof

system can handle as a purely formal modifies list. Later on M can be instantiated to
something more specific than the trivial modifies list, which only says everything could have
changed. Although we will not investigate this possibility directly, we will showin Sect. 5.2
how a similar treatment for a constant symbol C of type formula can be achieved.

32

Perhaps the last variant is the most promising in the long run. More practi-
cal aspects of the modifies list following this last variant will be covered in
Sect. 5.5, when the basic specification construction process has been intro-
duced.

33

Chapter 5

Sequent Calculus Approach

In this chapter, we present the practical approach of automatic specification
construction by theorem proving, and prove that it produces maximal speci-
fications. Further, we introduce the concept of state change accumulators for
built-in dealing with unknown modifies lists.

5.1 Overview

So far we have presented a problem formalisation for strongest specification
construction and a constructive existence proof. Thereby we have proven that
an effective construction procedure for strongest specifications exists. Now we
want to examine how a more algorithmic realisation of this procedure could
look like, and to what extent readability concerns can be taken into account.

Having achieved a formalisation of the specification construction problem
in dynamic logic, it is an apparent idea to employ means of “automatic logic”,
namely theorem proving using a sequent calculus, for an automatic construc-
tion process. This follows a general principle: when realising a description of
any problem in logic, using solution methods of the computational branch of
logic as well should at least be worth a closer look. In fact, in our case it will
turn out that the results of this are pretty good, and that the corresponding
process is very flexible.

In this section, we explain how the specification of a program can be
computed by means of a theorem prover on the basis of sequent calculus1.
We achieve this computation by starting a proof from a specially prepared
proof obligation and perform as many proof steps as possible until we reach a
dead end. Looking at a proof situation that has no more applicable inference

1For the moment, imagine the KeY sequent calculus for dynamic logic for Java of
[Ahrendt et al., 2004].

35

rules from the right perspective will reveal the program’s specification. In
our implementation we actually employ such failed proof attempts directly.
However, more formally, we could just as well include special closing rules or
axioms whose applicability unveils the program specification.

Example 5.1.1 For a motivation of the theorem proving approach to spec-
ification construction, consider the program α.

i f (x > 0) {
x = x + 1;

}
x = x + 2;

Assuming that some specification ψ of α appears from out of nowhere. Then
we can establish the following conjecture that ψ is a formal specification of
α.

� ∀xpre
(
x
.
= xpre ⊃ [α]ψ

)

Further suppose that for some reason we prefer to claim the following, in-
stead.

� ∀xpre
(
x
.
= xpre ⊃ 〈α〉ψ

)
(5.1)

Then regardless of the fact that we have not yet revealed which particular
formula ψ actually is, we can start a proof of condition 5.1, nevertheless. It
continues as follows.

x
.
= xpre, x > 0 ` 〈x = xpre + 3〉ψ

x
.
= xpre, x > 0 ` 〈x = xpre + 1 + 2〉ψ

x
.
= xpre, x > 0 ` 〈x = x + 1〉〈x = x + 2〉ψ

x
.
= xpre, x ≤ 0 ` 〈x = xpre + 2〉ψ

x
.
= xpre,¬x > 0 ` 〈x = x + 2〉ψ

x
.
= xpre ` 〈α〉ψ

In this situation, the proof attempt cannot continue any further without
knowledge about the real structure of ψ. As anticipated, our attempt to proof
that ψ is a specification (in the sense of condition 5.1) has failed. Nonetheless,
we have come to know several properties of the program α during the proof.
Now the idea is that a thorough inspection of the above proof attempt could
reveal in retrospect, which formula ψ we would have to pick for completing
the proof. From the individual branches, we can see the effect of α, and
combine the logical descriptions of those effects into a single formula.

ψ′ := (xpre > 0 ⊃ 〈x = xpre + 3〉ψ)

∧(xpre ≤ 0 ⊃ 〈x = xpre + 2〉ψ)

36

In fact, the above proof attempt closes when choosing ψ along these lines, as
follows.

ψ := (xpre > 0 ⊃ x
.
= xpre + 3)

∧(xpre ≤ 0 ⊃ x
.
= xpre + 2)

�

As a brief sketch of the theorem proving approach to specification construc-
tion, we summarise what has been unveiled in example 5.1.1 in a more
systematic way. The basic idea is to start a proof attempt like that of
condition 5.1 with an unknown formula ψ, perform some (limited) inferences,
and then extract a specification from the open goals of the proof. Hopefully,
the extracted specification allows to close the proof in retrospect, and thereby
turns out to be a specification of the original program.

5.2 Constructing Special Proof Obligations

Part of the secret of our approach lies in the proper preparation of the proof
obligation for computing specifications. In fact, there are several possibilities,
depending on a trade-off choice between excessive pre-processing and non-
invasive rule modifications2. If a (reasonably small) upper bound for the set
of variables modified by the program is known in advance or can be computed
in a pre-processing step, then the computation is straightforward and close
to the theory.

Assuming that we know that the program αmodifies at most the variables
MV (α) = {x1, . . . , xn} – for simplicity this set is assumed to contain all input
variables already – then we start proving the following proof obligation.3

� ∀xpre
(
x
.
= xpre ⊃ 〈α〉C

)
(5.2)

In preparation of later generalisations this conjecture already includes the
formula C which – for now – we specialise as

C := x
.
= xpost := x1

.
= x1

post ∧ . . . ∧ xn
.
= xn

post (5.3)

Contrary to the definition of specifications we prefer 〈α〉 instead of [α] here,
which has its deeper reason in Res. 3.1.6 and will become clearer when we

2As we will see later, calculi used for specification computation have to fulfil some con-
ditions. Thus smooth rule adaptation and a high degree of compatibility between existing
rules and any new rules introduced for specification construction is of advantage.

3Remember that the formula x
.
= x

pre with generic names abbreviates x1
.
= x1

pre ∧
. . . ∧ xn

.
= xn

pre.

37

investigate the overall statement in Sect. 5.5. For now we will confine our-
selves to noting that we intend to apply transformations of an effect related
to the antecedent placement of the modal operator in condition 2.7.

5.3 State Change Accumulation

An alternative and perhaps more applicable approach does not depend on
previous knowledge of the modifies list. The clue is to build support for
accumulating intermediate state changes into the proof system. This is quite
straightforward in principle, but gets obfuscated by the technical details.
These complications have to do with inference rules that discard all those
state changes that do not affect the formulas of the current goal. Of course,
such rules are necessary for proving statements that ignore some information
about a piece of code, but here they interfere with our intent not to overlook
any effects of the code. Nevertheless, we still need them for closing many
subgoals during the proof, so switching them off completely would not solve
the problem, either.

Example 5.3.1 In the KeY System, the rules that have to be blocked se-
lectively for specification computation with state change accumulation are
called update simplifications. Since introducing updates is not necessary for
understanding the particular consequences for specification construction, we
retain ordinary assignment modalities of quantified dynamic logic. In the
usual notation without updates, a reduction like the following would be legal
but abolish information.

〈x = t〉y > 1 7→ y > 1 (provided that x does not occur free in y)

Intuitively, what we have to make sure is that these simplifications do not
happen to every part of the formulas in the proof attempt. Otherwise a state
change by the program would have gone by unnoticed . If – for now – you
imagine the above formula y > 1 to be a representative case for the formula
C of the proof obligation condition 5.2, and the assignment x = t to occur
within the program, then the above reduction would annihilate the state-
ment completely without recording its effect. So whatever “specification” we
would be able to reconstruct at the end of the proof attempt does not depend
on the statement x = t. And this independence is, of course, untrue in the
general case, since most programs have a different effect when removing one
particular statement in between. Instead, we should make sure that not a
single effect of the program slips our attention. �

Thus, in order to guarantee coming up with the strongest specification, we

38

have to remember every kind of information about the program somewhere.
In essence, due to the imperative nature of our programming language, this
requires that state change information accumulates instead of disappears
from the formulas. And for intermediate state change accumulation, we in-
troduce a constant symbol of type formula called state (change) accumulator
C into the postcondition. It is a surrogate for an unknown formula and serves
the purpose of blocking all simplifications or reductions that would require
knowledge about variables not occurring in the formula. An inference rule
that simplifies away (or forgets) a state change – just because its affected
variable has not yet been mentioned within the formula and thus changes
to it seem irrelevant – is no longer possible for C. This is due to the fact
that C’s symbolic nature entails that it could have been replaced by any for-
mula, especially one referring to the particular variable that is subject to the
state change and would thus notice the change. So in a way, C has an eidetic
(cumulative) memory for state changes. 4

5.4 Specification Extraction

From a proof attempt of a proof obligation for a specification computation
(condition 5.2) that allows no more applicable inference rules, we can excerpt
some information to construct the computed specification of the underlying
program. When a sequent proof runs out of applicable inference rules – apart
perhaps from non-helpful “cyclic” ones, like commuting formulas –, it ends
up with a set of sequents forming the still open goals and the closed goals.
The closed goals can safely be ignored because they only contain logical
truths and thus no longer contribute to the specification of the particular
program at hand. The open goals, however, represent valuable information.
From a positive view, they constitute formulas that have to be true in order
to validate the tautological nature of the original conjecture postulated as
the proof obligation. So for the proof obligation – which, in our case, is a
statement about what is true of the state change performed by the program
– to be valid it is necessary that all remaining formulas of the open goals are
valid. Turned upside down, with some care this reads as: whatever is true
about the state change is equivalent to the conjunction of the open goals. So

4From a systematic point of view, using the constant symbol C of type formula is
a variation of the conceptual ideas behind the automatic construction of characterising
formulas for correspondence theory by [Gabbay and Ohlbach, 1992]. Here, C plays a role
comparable to the schematic propositional atom p in the characterising formula �p ⊃ p

of the system T of modal logic (refer to [van Benthem, 2001] for more information on
correspondence theory).

39

let us extract the specification ψC as a conjunct of the open goals. And there
it appears, the specification of the piece of program, constructed by at least
semi-automatic means of sequent calculus theorem proving. What still has to
be taken care of are the precise conditions under which the proof procedure
does not disturb the intermediate equivalences. We examine them next.

Definition 5.4.1 (Equivalence Transformation) An inference rule

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

is called equivalent transformation if its premise and its conclusion are locally
equivalent, i.e. if for each interpretation I for each state s

I, s � (Γ ` ∆)

⇐⇒

I, s � (Γ1 ` ∆1) ∧ · · · ∧ (Γn ` ∆n)

Note that this definition also applies for axioms without premises (n = 0)
where it collapses to that of tautologies.5The sequents have their usual trans-
lation

(γ1, . . . , γm ` δ1, . . . , δl) := (

m∧

i=1

γi) ⊃ (

l∨

j=1

δj)

Remark 5.4.2 An inference rule of the above form is an equivalent trans-
formation ⇐⇒

� (Γ ` ∆)↔ (Γ1 ` ∆1) ∧ · · · ∧ (Γn ` ∆n)

Remark 5.4.3 Local equivalence is a congruence relation.

Actually this choice for the notion of equivalence transformations is not nec-
essarily the only possibility. It is quite convincing that the condition is suf-
ficient, but not at all apparent whether it has been chosen too strong. This
criterion for inference rules could require re-weakening if too many practi-
cal programs cannot be specified automatically with this approach. On the
other hand, our theory (especially Res. 3.2.1 in conjunction with Res. 3.2.5)
suggests that local equivalence is what can be obtained in the large. There-
fore demanding local equivalence for each intermediate step suggests itself
instantly. Of course, we have to keep in mind that what holds for the large

5Also note that the notion is not inherent to sequent calculus inference rules of the
above for, but can be extended directly to other calculi.

40

does not always apply to the small as well. However intuitive such a conclu-
sion may appeal, local equivalence in the large does not necessarily require
exclusively locally equivalent transformations at every single argument in
between.

Anyway, the intuition behind the local equivalence approach as opposed
to a global equivalence approach is natural. We do not only want to say
something about those structures in which the formulas are valid in every
state, but also about every single state which validates the formula in an
arbitrary structure. Even though specifications are usually intended to hold
for every state, we also want the transformed formulas to retain each property
that is only true for some but not all initial states.

The following results justify simplified reasoning about equivalent trans-
formations and the investigation of individual inference rules.

Claim 5.4.4 (“Context-free equivalent transformations”)

Γ, φ1 ` ψ1,∆ ... Γ, φn ` ψn,∆

Γ, φ ` ψ,∆

is an equivalence transformation if and only if the following is

φ1 ` ψ1 ... φn ` ψn

φ ` ψ

Proof: Since ⊃ left-distributes over ⊃,∧,∨,↔ so does ` , and since
Γ, φ ` ψ is equivalent to Γ ` φ ⊃ ψ, the following equivalences hold.

(Γ, φ ` ψ)↔
(
(Γ, φ1 ` ψ1) ∧ · · · ∧ (Γ, φn ` ψn)

)

⇐⇒ (Γ ` φ ⊃ ψ)↔
(
(Γ ` φ1 ⊃ ψ1) ∧ · · · ∧ (Γ ` φn ⊃ ψn)

)

⇐⇒ Γ `
(

(φ ⊃ ψ)↔
(
(φ1 ⊃ ψ1) ∧ · · · ∧ (φn ⊃ ψn)

))

and thus (use Γ,¬∆ for Γ) also

(Γ, φ ` ψ,∆)↔
(
(Γ, φ1 ` ψ1,∆) ∧ · · · ∧ (Γ, φn ` ψn,∆)

)

⇐⇒ Γ `
(

(φ ⊃ ψ)↔
(
(φ1 ⊃ ψ1) ∧ · · · ∧ (φn ⊃ ψn)

))

,∆

If the latter is a tautology for every interpretation and state, independent of
the context Γ, this is especially true for Γ = > and Γ = ⊥, and conversely
so. Likewise arguments for ∆ now conclude the proof. �

41

Remark 5.4.5 (“omnipresent equivalent transformations”) An
inference rule

....ψ....

....φ....

is an equivalence transformation if and only if its premise and conclusion are
locally equivalent.

Proof: This is because local equivalence is a congruence relation �

Example 5.4.1 Examples (“+”) and counter examples (“−”) for equivalent
transformations. See Res. 5.4.6 for those proofs that involve more than just
a few obvious arguments:

“+” and-right
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆

“−” weakening
Γ ` ∆

Γ, φ ` ∆

Γ ` ∆

Γ ` ∆, φ

That this rule is precluded because it is no equivalence transformation is
what we wanted since its application would omit information, rendering
the specification useless, as we will see in example 6.3.1.

“−” Skolemisation

Γ, φ(X1, . . . , Xn, s(X1, . . . , Xn)) ` ∆

Γ, ∃y φ(X1, . . . , Xn, y) ` ∆

where {X1, . . . , Xn} are the free variables occurring in
∃y φ(X1, . . . , Xn, y) and s is a new Skolem-function constant.

“+” Hilbert ε-rule, sometimes called “critical axiom”

Γ, φ[y 7→ εy φ] ` ∆

Γ, ∃y φ ` ∆

This rules is a locally equivalent replacement for Skolemisation.6

6During the time of writing there has been a change from the ε-rule to Skolemisation
throughout the KeY system for other reasons.

42

“+” universal quantifier
Γ, φ[x 7→ t], ∀x φ ` ∆

Γ, ∀x φ ` ∆

“+” branch
Γ, b ` 〈s〉φ,∆ Γ,¬b ` 〈t〉φ,∆

Γ ` 〈if(b) s else t〉φ,∆

“−” “weakening” single-side branch

Γ ` b,∆ Γ, b ` 〈s〉φ,∆

Γ ` 〈if(b) s else t〉φ,∆

“−” cut with weakening
Γ ` φ Γ, φ ` ∆

Γ ` ∆

“+” cut
Γ ` φ,∆ Γ, φ ` ∆

Γ ` ∆
This case distinction rule may not always be a good choice for achieving
most readable specifications, though. When we end up in subsumption
cases or identical consequence cases, cut should perhaps not have been
applied. But still its application does not disturb local equivalence.

“+” cut-derived
Γ ` φ,∆ Γ ` ¬φ,∆

Γ ` ∆

“+” unwind loop once

Γ ` 〈if(b){a; while(b)a}〉φ,∆

Γ ` 〈while(b)a〉φ,∆

“−” loop induction with arbitrary invariant I

Γ ` I,∆ I, b ` [a]I I,¬b ` φ

Γ ` [while(b)a]φ,∆

“−” assignment rule

Γ[x 7→ y], x
.
= t[x 7→ y] ` φ,∆[x 7→ y]

Γ ` 〈x = t〉φ,∆

where y is a new variable. This rule is only globally equivalent, not
locally equivalent.

43

“+” assignment rule with substitutions7

Γ ` φ[x 7→ t],∆

Γ ` 〈x = t〉φ,∆

“+” Further examples of equivalence transformations are the usual axioms
and inference rules of propositional logic, equations, or reordering .

�

Remark 5.4.6 (Proofs of local equivalence results) 1. The assign-
ment rule with new variable y is only globally equivalent, not locally
equivalent.

Γ[x 7→ y], x
.
= t[x 7→ y] ` φ,∆[x 7→ y]

Γ ` 〈x = t〉φ,∆

2. The assignment rule with substitutions is locally equivalent.

Γ ` φ[x 7→ t],∆

Γ ` 〈x = t〉φ,∆

Proof:

1. First we prove that local consequence does not hold, and thus local
equivalence holds less than ever.

“→” Γ := >,∆ := ⊥, t := x − 1, φ := x
.
= 0 then in the state

s := [x 7→ 1] we have that

s � > ∧ 〈x = x− 1〉x
.
= 0

but
s 2 ∀y (> ∧ x

.
= y − 1 ⊃ x

.
= 0)

because
s[y 7→ 2] � > ∧ x

.
= y − 1

s[y 7→ 2] 2 x
.
= 0

Then we prove that global equivalence holds nevertheless.

7In fact, this rule is not correct if φ still contains further modalities. If restricting the
applicability to innermost modalities does not suffice, then we need a concept like KeY
updates which are “substitutions that stick to modal operators”. Even though those nested
modality cases are thus more complex, the principles are still the same.

44

“→” We have to show that

s � ∀y (Γ[x 7→ y] ∧ x
.
= t[x 7→ y] ⊃ φ)

Assuming that s � Γ[x 7→ y] ∧ x
.
= t[x 7→ y] we have s[x 7→

val(s, y)] � Γ by Res. A.1.1. By our global premise we have

s[x 7→ val(s, y)] � Γ ⊃ 〈x = t〉φ

⇒ s[x 7→ val(s, y)] � 〈x = t〉φ ⇒

s[x 7→ val(s, y)][x 7→ s[x 7→ val(s, y)](t)]
︸ ︷︷ ︸

s[x7→s[x 7→ val(s, y)](t)
︸ ︷︷ ︸

val(s, t[x 7→ y])
︸ ︷︷ ︸

val(s,x)

]

� φ

thus s � φ.

“←” Assuming that s � Γ we have to show that s � 〈x = t〉φ, i.e. that
s[x 7→ val(s, t)] � φ. According to our global premise we have

s[x 7→ val(s, t)] � ∀y (Γ[x 7→ y] ∧ x
.
= t[x 7→ y] ⊃ φ)

For s′ := s[x 7→ val(s, t)][y 7→ val(s, x)] we have s′ � x
.
= t[x 7→ y]

by construction. s′ � Γ[x 7→ y] because of s � Γ and val(s′, y) =
val(s, x) whilst x /∈ FV (Γ[x 7→ y]). Then by the premise s′ �

φ
y/∈FV (φ)
⇒ s[x 7→ val(s, t)] � φ

2. We prove that 〈x = t〉φ ≡ φ[x 7→ t].

s � 〈x = t〉φ
⇐⇒ s[x 7→ val(s, t)] � φ

Res. A.1.1
⇐⇒ s � φ[x 7→ t]

Thereby note that assignments are deterministic: there is a unique
s′ with sρ(x = t)s′, namely s′ := s[x 7→ val(s, t)]. Especially,
〈x = t〉φ ≡ [x = t]φ.

�

45

5.5 Quintessence

In this section we reconcile the individual steps, see what we have achieved
altogether so far, and express what the overall statement of our approach
is. With the detailed knowledge collected in the previous sections, we will
conceive how the individual pieces of the puzzle finally coalesce to a sensible
whole.

We started by proving a specification computation proof obligation from
condition 5.2 that has an arbitrary state change accumulator C. Meanwhile
we have been performing only equivalent transformations during the proof,
and then have extracted the specification ψC as a conjunct of the open goals.
Thereby we have proven the following central higher-order statement.

Lemma 5.5.1 Let ψC be the conjunct of the (open) goals of a proof attempt
of condition 5.2 that only involves equivalent transformations. Then

for each formula C for each interpretation I for each state s

I, s � ∀xpre
(
x
.
= xpre ⊃ (〈α〉C ↔ ψC)

)
(5.4)

Proof: Since we only applied equivalent transformations, premise and con-
clusion of every rule application are locally equivalent. By iteration, the ini-
tial proof obligation and ψC are locally equivalent as well. Therefore (when
leaving quantifiers implicit for simplicity)

� (x
.
= xpre ⊃ 〈α〉C)↔ ψC

⇒ � x
.
= xpre ⊃

(
(x

.
= xpre ⊃ 〈α〉C)↔ ψC

)

⇐⇒ � x
.
= xpre ⊃ (〈α〉C ↔ ψC)

�

This result represents the essential statement distilled from what is true
about the process. Also it is quite intuitive that it really provides what we
need, because condition 5.4 expresses what is equivalent to a program run,
or, more precisely, equivalent to holding after a program run.

What still has to be achieved in the following is the particular connec-
tion with strongest specifications, and readable presentation alternatives. For
this several possibilities exist. First, a natural option is to take ψC directly
as an equivalent formulation of the effect of a program run is a natural
option, though perhaps not the most simple representation for proving state-
ments about. Second, translating the formulas back to corresponding Java

statements8 presents an equivalent program, which achieves a program nor-
mal form. Third, to keep the dynamic logic formula structure of ψC while

8For example translating conditional implications to p if (b) s else tq, and embedding
the remaining modalities directly into the source code.

46

imposing some naming standards like the use of xpre and xpost instead of x,
thereby rigidifying the specification. And fourth, to further reduce all remain-
ing single-step modalities to equations (we will investigate this approach in
Sect. 6.1).

For user output we prefer the first option, while for our further proofs,
the third option comes in handier. The second possibility with program nor-
malisation could be worth a closer look in case of minimising formal methods
on the surface of the user interaction, or perhaps for optimising compilers.
The fourth option often is an extension of the third and may sometimes lead
to more convincing specifications, that can directly be adapted to an OCL
model.

In order to see what Res. 5.5.1 has to do with computing specifications
and why calling the conjunct ψC of open goals a specification really is justified,
we consult Res. 3.2.1. Furthermore the extracted specification ψC will usually
contain some reference to the initial specification accumulator C from the
postcondition. If we now specialise C to a proposition that makes ψC true,
the latter will be a specification9. If we specialise C “sufficiently strong” we
will have “the” strongest specification of the program. We will make this line
of thought more precise in the following central result of our work. The proof
is simple because it combines many of the above results.

Proposition 5.5.2 With C := x
.
= xpost, (a variant of) ψ

x

.
=x

post is rigid
for α and equivalent to “the” maximal specification ψα.

Proof: According to Res. 5.5.1, ψC satisfies the condition 3.1 of Res. 3.2.1.
Thus if we could prove that ψC is rigid for α, Res. 3.2.5 would imply that ψC ≡
ψα is “the” maximal specification. Unfortunately, ψC is not rigid in general
such that the premises of Res. 3.2.5 are not fulfilled. Therefore, our strategy
for proving this conjecture has to be refined a bit. We will still start from
the formula ψC, which satisfies condition 3.1, and successively perform small
transformations which sustain condition 3.1 while getting closer to rigidity.

So it remains to construct a variant ψ′
C of ψC that is rigid for α and still

satisfies condition 3.1.
By Res. A.1.3, prepending 〈x = xpre〉 to ψC does not disturb condition 3.1,

since ψC occurs under the predication of x
.
= xpre.10 Then replacing x by x′

on all modal quantification levels11 does not disturb condition 3.1 according

9because it originates from equivalent transformations only.
10Here an admissible intermediate step is to replace x with xpre on modal quantification

level of depth 0 because x and xpre share the same value. Even though this additional
step might be preferable from a systematic point of view, it is not necessary and will be
omitted here for simplicity.

11The replacements also have to take place within the programs of modalities. Further

47

to Res. 3.2.2. Call ψ′
C the resulting variant of ψC . The last renaming step

rigidifies ψ′
C for α because of Res. A.4.2 and MV (α) ∩ FV (ψ′

C) = ∅ by
construction. �

Example 5.5.1 Let us examine a small example for illustrating the overall
specification construction process. Consider again, the program α from our
motivating example 5.1.1.

i f (x > 0) {
x = x + 1;

}
x = x + 2;

When leaving out the initial assignment condition x
.
= xpre for readability,

the proof attempt for the program α above can continue from condition 5.2
up to the following situation.

x > 0 ` 〈x = x + 3〉C

x > 0 ` 〈x = x + 1 + 2〉C

x > 0 ` 〈x = x + 1〉〈x = x + 2〉C

x ≤ 0 ` 〈x = x + 2〉C

¬x > 0 ` 〈x = x + 2〉C

` 〈α〉C

Since no more (helpful) inference rules are applicable, we replace C by xpost .=
x. This is possible, because the remaining elementary diamonds (or updates)
promise that only x changes, so that MV (α) = {x}. Then we extract

ψC := (x > 0 ⊃ 〈x = x + 3〉C)

∧(x ≤ 0 ⊃ 〈x = x + 2〉C)

Which formally reveals the proper specification according to the proof of
Res. 5.5.2 after some renaming transformations.

ψ′
xpost .=x′

:= (xpre > 0 ⊃ 〈x′ = xpre + 3〉xpost .= x′)

∧(xpre ≤ 0 ⊃ 〈x′ = xpre + 2〉xpost .= x′)

For avoiding the new variables x′, this can be simplified again to the following
specification formula, as expected.

ψxpost .=x
:= (xpre > 0 ⊃ xpost .

= xpre + 3)

∧(xpre ≤ 0 ⊃ xpost .
= xpre + 2)

note that this renaming construction is a consequent enhancement of the ideas behind the
proof of Res. 3.2.2. Here the same effect of replacing remaining modalities 〈a〉 with 〈a′〉
etc. will take place.

48

From this example, we can conclude that even though the variable renaming
has been a technical trick in the proof, it is not necessary for an implemen-
tation. The translation from ψC to ψxpost .=x

can also be achieved without
intermediate variable renaming. �

Remark 5.5.3 The modifies list MV (α) = {x1, . . . , xn} for α that is re-
quired for the construction of x

.
= xpost can be computed in retrospect by

accumulating left-hand sides of variable assignments occurring in ψC .

Experience shows that the computed specification attains more readability if
we achieve previous state reference through other built-in mechanisms that
are equivalent to the x

.
= xpre solution, which is so close to the theory. The

reason for this preference is that users usually will not profit much from
specifications bloated by additional conditions like “if x and xpre initially
have the same value then ...”. It is simpler for a human to remember the
relationship between x and xpre once and for all, in favour of a more concise
notation that highlights the essential information without concealing them
within a pile of technical details. There are at least two ways to achieve
this focus. First, to track the course of the x

.
= xpre formulas through the

proof tree and to omit them from the final depiction whenever appropriate.
And second, to use a built-in mechanism equivalent to mentioning x

.
= xpre

that does not have the disadvantages of an illegible result. Possible solutions
include, for example, to use a built-in dedicated @pre-operator, or to start
from an initial program variable assignment of rigid constant symbols like
after 〈x = x0〉.

So far we have only said that equivalent formulations of the strongest
program specification can be computed, not how simple they are, nor which
precise logical form they take. What specifications typically reduce to is a set
of conditional single-step transitions, perhaps still embedded inside a loop.
Of course, this depends on the particular underlying calculus and is not an
inherent property of the computing specifications approach.

5.6 Examples

First we start with an example that already displays some typical behaviour
and change accumulation, but that still is manageable.

Example 5.6.1 In the following abbreviated Java program α, p 2 | xq is
short for the condition that 2 divides x, which could have been written as

49

the longer term px % 2 == 0q. But that would have blown up the following
formulas rendering them unnecessarily illegible.

i f (2 | x) {
x = x + 2;

} else {
x = x + 3;

}
x = x + 1;

Leaving out the initial assignment condition x
.
= xpre for readability, the

proof attempt for the program α above can continue from condition 5.2 up
to the following situation.

2 | x ` 〈x = x + 3〉C

2 | x ` 〈x = x + 2 + 1〉C

2 | x ` 〈x = x + 2〉〈x = x + 1〉C

2 - x ` 〈x = x + 4〉C

2 - x ` 〈x = x + 3 + 1〉C

2 - x ` 〈x = x + 3〉〈x = x + 1〉C

` 〈α〉C

Since no more (helpful) inference rules are applicable, we replace C by
xpost .

= x here. This is possible because the remaining elementary diamonds
(or updates) promise that only x changes, so that MV (α) = {x}. Then we
extract

ψC := (2 | x ⊃ 〈x = x + 3〉C)

∧(2 - x ⊃ 〈x = x + 4〉C)

which formally reveals the proper specification after some renaming trans-
formations.

ψ′
xpost .=x′

:= (2 | xpre ⊃ 〈x′ = xpre + 3〉xpost .
= x′)

∧(2 - xpre ⊃ 〈x′ = xpre + 4〉xpost .= x′)

For avoiding the new variables x’, this can be simplified again to the following
formula, as expected.

ψxpost .=x
:= (2 | xpre ⊃ xpost .= xpre + 3)

∧(2 - xpre ⊃ xpost .
= xpre + 4)

�

Now we present an example where things get more complicated due to
the presence of proper irreducible while loops.

50

Example 5.6.2 Examine again the list traversion example 4.1.1, inherently
retaining loop-like constructions in the specification. Call the program of
example 4.1.1 α. Again we will leave out the initial assignment condition
x

.
= xpre := x

.
= xpre := ∀o x(o)

.
= xpre(o), which corresponds to the

modifies list MV (α) = {x}, for readability. The proof for the program α
reasonably only continues from condition 5.2 to the following situation.

` 〈n = root〉〈while(n! = empty){...}〉C

` 〈α〉C

Then almost the only12 applicable rule unfolds the loop once. Suppressing
the simple assignment 〈n = root〉 this would lead to the following.

` 〈if(n! = empty){n.x = n.x + 1; n = n.next; while(n! = empty){...}}〉C

` 〈while(n! = empty){...}〉C

From this situation the proof could in principle continue with assimilating
the branch and elementary assignments into ordinary sequent formulas ex-
pressing the same circumstances, for example to the following two open goals.

n 6= empty ` 〈n.x = n.x + 1; n = n.next〉〈while(n! = empty){...}〉C

n
.
= empty ` C

But even after encoding the outer diamond’s elementary assignments with
means of classical formulas, the initial problem of the while loop remains. So
instead of unfolding the loop to infinite unreadability the proof should stop
leaving the following extracted formula, and corresponding rigid specification
after some renaming acrobatics.

ψC := 〈n = root〉〈while(n! = empty){...}〉C

ψxpost .=x′
:= 〈n = root〉

〈while(n! = empty){n.x′ = n.x′ + 1; n = n.next}〉xpost .= x′

Because of the missing invariant knowledge and no further transformation
with the loop body, this only is a remote approximation of the far more
readable (also strongest) specification ψ of example 4.1.3. Also, intuitively,
that particular ψ offers more insight into what really happens than all
variants of ψC accomplish, even though they are strongest specifications
altogether. This is because of its processing of the loop body and a separate
concept for expressing the application of this transformation to all affected
list elements. �

12No loop induction is possible without knowing a loop invariant. Even though some
trivial rules could be applicable, they do not really help.

51

5.7 Specification Construction Calculus

Specification construction works by starting from the proof obligation
condition 5.2, continues by performing some inferences, and concludes by
extracting the specification from the proof attempt. Obvious questions are:
How many inferences? And which calculus at all?

Which particular kind of calculus to apply is not a decisive question for the
feasibility of the specification construction process, as long as the inference
rules are equivalent transformations. Still the quality of the specification
depends on the nature of the rules. For example, a sequent calculus that is
able to close goals is superior to one without closing axioms, since it can
omit information that reduces to evident truths from the specification. The
application of inference rules establishes a normal form of the program, or its
specification, respectively. However, what properties of the calculus guarantee
which particular normal form of the specification, is probably a very difficult
question to prove formally. Nevertheless, there are some desirable qualitative
properties, which can be made plausible informally.

Whether the calculus underlying proof system is a sequent calculus is in-
significant. Still we prefer to use sequent calculus notation. That the inference
rules should analyse and decompose modalities, is a natural demand, and es-
sential to the fundamental ideas of specification construction with theorem
proving. Lengthy programs within the modalities should be consequently re-
duced in size, with their effect simulated in logical language. Otherwise, the
specification construction process would never accomplish a sufficient logical
analysis of the computer program. This is, for example, the initial prob-
lem with loops, which complicate the further program decomposition. Since
branching conditions have a natural counterpart in logic, what remains for
the calculus to achieve is an adequate processing of assignments.

Less immediate properties of a specification construction calculus are con-
cerned with simplification. Closing tautological cases is helpful for omitting
logically unnecessary information from a specification. Communicating and
combining information about the program from different parts of a formula
in the proof attempt is vital for removing subcases of the program’s effect
that refer to incompatible branches of the program, which no program run
can ever follow, anyway. This communication is usually ensured by infer-
ence rules that decompose complex formulas into simpler subcases, thereby
combining distributed information on one branch or subgoal, systematically.

Example 5.7.1 Consider the following Java program α. It has branching
conditions of mutual effect, which exclude some paths.

i f (0 < x) {

52

x += 1; // short form of x = x + 1;
}
i f (x > 0) {

x = 3;
}

We abbreviate the second p if (x > 0)... q statement with α2. When leav-
ing out the initial assignment condition x

.
= xpre for readability, and when

abbreviating some rule applications, the specification construction proof for
the program α reaches the following situation.

x > 0 ` 〈x = 3〉C

x > 0, x > −1 ` 〈x = 3〉C

0 < x, x+ 1 > 0 ` 〈x = 3〉C

0 < x, 〈x+ = 1〉x > 0 ` 〈x+ = 1〉〈x = 3〉C

∗

⊥ ` . . .
x > 0, x ≤ −1 ` . . .

0 < x, x + 1 ≤ 0 ` . . .
0 < x, 〈x+ = 1〉x ≤ 0 ` . . .

0 < x ` 〈x+ = 1〉〈α2〉C

0 ≥ x ` C

...
0 ≥ x ` 〈α2〉C

` 〈α〉C

Since no more inference rules are applicable, we replace C by xpost .
= x here.

This is possible, because the remaining elementary diamonds promise that
only x changes, so that MV (α) = {x}. Then we extract

ψC := (x > 0 ⊃ 〈x = 3〉C)

∧(x ≤ 0 ⊃ C)

=̂ x > 0 ⊃ 〈x = 3〉C

�

Example 5.7.2 The same principle of example 5.7.1 extends to the follow-
ing program.

i f (x < 0) {
x = 0;

} else {
x = x + 1;

}
i f (0 > x) {

x = 17;
} else {

x = x + 2;
}

Here the specification construction proof is similar, but has more consisable
branches. One that can be closed by arithmetic using the tautology x+ 1 <

53

0 ⊃ x < 0, and one branch that contains subsumption cases a+1 < 0∨a < 0.
It leads to the following specification.

ψC := (x < 0 ⊃ 〈x = 2〉C)

∧(x ≥ 0 ⊃ 〈x = x + 3〉C)

�

Further simplification results from inference rules that reconcile informa-
tion to a briefer representation. On the contrary, inference rules that unneces-
sarily duplicate information in one formula, are undesirable. So an inference
rule that replaces a subformula A by A ∨ A would not be a good idea, for
example, because its application bloats the resulting specification without
any benefit.

Example 5.7.3 Specification construction very often profits from rules for
algebraic simplification. Consider the following program α.

for (int i = 0 ; i < 4 ; i++) {
s = s + n∗i ;

}

Let W denote the following code snippet, which we will need in the proof.

while (i < 4) {
s = s + n∗i ;
i++;

}

Then α is equivalent to

{
int i = 0;
W

}

When computing the specification of α, an abbreviated proof attempt – with

54

many closing branches left out – could look like

` 〈s = s + n ∗ 6〉〈i = 5〉C

` 〈s = s + n ∗ 3〉〈s = s + n ∗ 3; i = 5〉〈W 〉C

` 〈s = s + n ∗ 3〉〈i = 4〉〈W 〉C

` 〈s = s + n + n ∗ 2〉〈i = 4〉〈W 〉C

` 〈s = s + n〉〈i = 2〉〈s = s + n ∗ i; i + +〉〈W 〉C

` 〈s = s + n〉〈i = 2〉〈W 〉C

` 〈i = 1〉〈s = s + n ∗ 1; i + +〉〈W 〉C

` 〈i = 1〉〈W 〉C

> ` 〈i = 0〉〈i = 0 + 1〉〈W 〉C

0 < 4 ` 〈i = 0〉〈s = s + n ∗ 0; i = i + 1〉〈W 〉C

〈i = 0〉i < 4 ` 〈i = 0〉〈s = s + n ∗ i; i + +〉〈W 〉C

∗

⊥ ` . . .
0 ≥ 4 ` . . .

〈i = 0〉i ≥ 4 ` . . .

` 〈i = 0〉〈W 〉C

` 〈α〉C

The readability of the specification obtained profits decisively from the fol-
lowing simplification inference rule that we have applied during the proof
attempt.

(a+ b) ∗ x

a ∗ x + b ∗ x

The specification extracted from the above proof attempt is as follows.

ψC := spost .= spre + 6 ∗ n ∧ ipost .
= 5

Here the information about i (or ipost, respectively) can also be removed
since i is a variable local to α only, and thus of no effect that is visible
outside. �

55

Chapter 6

Extensions

In this chapter, we describe extensions of the specification construction ap-
proach. Based on theorem proving technology, we continue the specification
construction process in order to reach more intuitive equations for describing
the effect of a program. Further, we consider an extension of specification
construction to partial specification completion, where the task is to auto-
matically add formulas to a partial method specification until the strongest
specification is attained.

6.1 Change Equations

We will now describe a way for creating a more intuitive though, perhaps,
less precise presentation of the computed specification. Instead of specifying
a program by single-step substitutions or updates this section deals with a
somewhat more anticipated approach of change equations. Change equations
are ordinary equations describing the transitional effect in logical terms and
are thus closer to classical first-order logic. So to say, instead of contracting to
conditional (single-step) modalities of depth 1, contraction continues further
to modalities of depth 0 (no modalities). Since without modalities there is
no built-in separation of prestate and poststate, the prestate and poststate
values explicitly have to be distinguished syntactically. Therefor, we intend
xpost to denote the poststate value of x.

In order to produce change equations, we add two inference rules to the
usual proof system, which perform the transformation from depth 1 modali-
ties to depth 0. One for accumulating state change information as (change)
equations, and one for getting rid of the state change accumulation symbol
once it occurs on the top-level of a sequent.

57

〈x = t〉C 7→ C ∧ xpost .= t (6.1)

` C 7→ ` > (6.2)

Example 6.1.1 Let us continue the specification construction process of
example 5.5.1 by extending the proof attempt as follows.

x > 0 ` xpost .= x + 3

x > 0 ` C ∧ xpost .= x + 3
x > 0 ` 〈x = x + 3〉C

x > 0 ` 〈x = x + 1 + 2〉C

x > 0 ` 〈x = x + 1〉〈x = x + 2〉C

x ≤ 0 ` xpost .= x + 2

x ≤ 0 ` C ∧ xpost .= x + 2
x ≤ 0 ` 〈x = x + 2〉C

¬x > 0 ` 〈x = x + 2〉C

` 〈α〉C

From this, we directly extract the specification in change equation form.

ψ′
xpost .=x

:= (x > 0 ⊃ xpost .
= x + 3)

∧(x ≤ 0 ⊃ xpost .
= x + 2)

respectively

ψxpost .=x
:= (xpre > 0 ⊃ xpost .

= xpre + 3)

∧(xpre ≤ 0 ⊃ xpost .
= xpre + 2)

�

Note that the above simple rules 6.1 and 6.2 rely on flat modalities. This
does impose restrictions on generality, though, since the transformation in
Chapt. 5 ensures a contraction of modalities. If, however, we would prefer to
apply those rules before this has been established, we would have to employ
multiple variables x′,x′′,x′′′, . . . for denoting the intermediate values of x.
But as soon as we rename the last variable to xpost, the same results still
hold.

6.2 Specification Completion

Now we consider the slightly more general setting of a partially specified pro-
gram and the task to complete the specification to the strongest specification
given the specified precondition and invariants. The problem of specifica-
tion completion reduces to ordinary specification construction with a slightly
modified initial proof obligation.

58

Let φP be the pre-specified (partial) precondition, and φI the (class) in-
variant. Instead of condition 2.1 a specification ψ now has to fulfil

� ∀xpre
(
x
.
= xpre ∧ φP ∧ φI ⊃ [α]ψ

)

Similarly, instead of condition 5.2, we start the sequent calculus construction
from the following proof obligation and continue in the usual fashion.

� ∀xpre
(
x
.
= xpre ∧ φP ∧ φI ⊃ 〈α〉C

)

Like in condition 5.3 we could specialise C to x1
.
= x1

post ∧ . . . ∧ xn
.
= xn

post.
Then we can obtain the specification ψC from the proof attempt in the usual
manner. In order to check whether α preserves the class invariant, a proof
of ψC � φI is sufficient. A minor inconvenience is that the common invariant
φI will then be repeated in each computed method specification. But when
we think of changing the class invariant after adopting the computed spec-
ification into the formal model, we could otherwise end up with the wrong
method specification if the invariant has been weakened. Also if we think
of non-conform subclassing (thus no subtyping) with invariant weakening,
then an automatically specified method of the super class should certainly
retain the (stronger) class invariant of the super class. Otherwise the scope
of the specification validity could be confused with the subclass, and thus
invalidated.

User-specified postconditions currently will not be incorporated into the
specification construction process. Rather they could be tested for being
a consequence of the computed specification. The reasons for this include
the following. If we would extend a pre-specified postcondition ψP to the
strongest specification, a natural wish could be that the computed specifica-
tion should neither repeat nor subsume the pre-specified part, but only cover
additional information. However, the condition that the constructed speci-
fication ψC should not subsume ψ, could be fulfilled very easily by coming
up with the specification ¬ψP ⊃ ψα. But this is, of course, not what has
been intended, originally. Therefore the wish that ψC shell not repeat the
pre-specified postcondition seems ill-defined.

Instead, when we allow the computed specification to repeat the part
that ψP already knew, the specification construction process consequently
does not have to respect nor know ψP at all. Then we are back to the orig-
inal specification construction and the sole use of ψP would be a check for
entailment by ψα.

59

6.3 Weak Specifications

It may be tempting to suspect that applying inference rules that are only
correct for an ordinary proof calculus but are no equivalent transformations,
is no harm and would still result in a weaker specification. Unfortunately,
this is not the case. From Res. 3.1.6 in conjunction with Res. 3.2.1 it is easy
to see that inference rules that are no equivalent transformations but only
their premise is sufficient for their consequence will prohibit coming up with
a proper specification. So when we want to reduce our demand of aspiring to
find the strongest specification we have to adopt “necessary” rules that are
not “sufficient”, but not the other way around. The sole inference rule that
really posed a problem when demanding local equivalence has been the loop
induction rule. Finding any substitute for it is easy as the proof of Res. 3.2.1
shows. We just need a formula of dynamic logic (including programs) that
expresses the iterative effect of a while loop. So even leaving out all rules for
while loops will do, since according to Res. 5.5.2 the result is the strongest
specification, nevertheless. But reaching a readable and simple formula for a
loop still is an open research problem and may require weakening specifica-
tions along these lines.

Example 6.3.1 In order to demonstrate the effect that the application of
those rules, which are no equivalence transformations, have on the specifi-
cation, let us continue example 5.5.1. When we would continue the proof
attempt with weakening we could reach the following situation.

` 〈x = x + 3〉C

x > 0 ` 〈x = x + 3〉C

x > 0 ` 〈x = x + 1 + 2〉C

x > 0 ` 〈x = x + 1〉〈x = x + 2〉C

x ≤ 0 ` 〈x = x + 2〉C

¬x > 0 ` 〈x = x + 2〉C

` 〈α〉C

From this proof attempt, which involves non-equivalence transformations, we
extract

ψC := (〈x = x + 3〉C)

∧(x ≤ 0 ⊃ 〈x = x + 2〉C)

And would receive the following formula, which fails to qualify as a proper
specification of α completely, since it implies 3

.
= 2 under the satisfiable

predication that xpre ≤ 0.

ψxpost .=x
:= (xpost .= xpre + 3)

∧(xpre ≤ 0 ⊃ xpost .
= xpre + 2)

60

Thus weakening is no admissible rule during specification construction, and
our notion of equivalence transformations correctly classifies the weakening
rule as non-applicable. �

The loop induction rule bears obstacles for specification construction of
a completely different quality. Wrong choices of the loop induction invariant
I give rise to counter-factuals and contra-intuitive propositions within the
specification. For example, if the loop initialisation condition Γ ` I,∆ fails to
close (or even reduces to ⊥), it will appear within the extracted specification,
much to the confusion1 of the user. Variations of inductionless induction
[Comon, 2001] and rippling [Bundy et al., 1993, Bundy and Lombart, 1995]
techniques could provide a suitable solution for loop specification.

Skolemisation is a less troublesome case. Application of the non-
equivalence transformation Skolemisation during specification construction
leaves “undeclared” constant Skolemisation symbols. They can be thought of
as implicitly existentially quantified by the user. The only remaining problem
is that the precise conditions that the Skolemisation symbols had to satisfy
is lost without Hilbert ε-rules.

1Γ ` I,∆ most probably will not have an apparent link to its meaning for the program’s
effect.

61

Chapter 7

Implementation

In this chapter, we briefly describe the implementation of the specification
construction process, its user interface and current limitations.

7.1 User interaction

The practical sequent calculus approach of Chapt. 5 has been implemented
as an additional module for the KeY System. Automatic specification con-
struction support shows up as an additional entry to the context menu of
the CASE tool modelling environment. An automatic specification construc-
tion process is initiated from the case tool by activation of that menu action
on the desired Java method implementation. In the appearing interactive
prover window, a click to the “Extract Specification” entry of the tools menu
starts the automatic prover and finally extracts and displays the resulting
specification.

7.2 Details

Behind the curtain, the automatic prover relies on the application of heuris-
tics – assuming non-equivalent transformation rules to be deactivated, for
example δ-rules and weakening1. Having reached a “good” final proof situ-
ation, perhaps by running out of applicable inference rules from the heuris-
tics, the specification extracts from the proof situation as a conjunction of
the open goals2. Somewhat involved from a purely technical point of view, is

1Loop induction rules currently require user interaction, such that heuristics will not
apply them unintentionally.

2As a peculiarity to KeY , constraints, as resulting from γ-rules, have to be lowered
then, i.e. translated back to ordinary dynamic logic without constraints. This can be

63

the assembly of the initial specification construction proof obligation. First,
there are several settings that control the precise treatment of prestate re-
membrance and poststate accumulation. And second, the isolation of the
dynamic logic representation of the program diamond from an UML and
OCL based modelling environment is somewhat involved. But apart from
these technical details the implementation directly continues along the lines
of the process described in Chapt. 5.

7.3 Limitations

The current state of the implementation still has some simple technical lim-
itations, though none poses an inherent difficulty. As far as adjusting the
heuristic settings is concerned, our implementation does not yet automati-
cally remove δ-rules temporarily from the set of applicable heuristics. Also a
reasonable setting for the maximum depth of heuristics applied before coming
up with a specification, needs user interaction. In conjunction with the miss-
ing heuristic adjustment, this may sound improper but actually is of great
advantage to the user for controlling the precise form that automatically
constructed specifications will reduce to. About the most severe theoretical
limitation is the coarse treatment of KeY constraints (as resulting from γ-
rules) in our implementation. But just like δ-rules, they almost never seem
to occur in practical examples of specification construction without lemma
introduction. The most severe practical limitation, however, is simplification.
Currently, loads of state change information about internal variables sneak
their way into the final specification displayed. Due to a missing program
variable scope concept in KeY , removing this variable noise from the out-
put bears unnecessarily complicated technical implementation details, but
is simple in principle, and probably a worthwhile future extension of the
implementation.

achieved by replacing them with their “declarative” meaning, a disjunction of conjunctions
of equalities.

64

Chapter 8

Summary

In the previous sections we have seen that the problem of automatically
specifying a program given its implementation can be solved in full gener-
ality. When embedding program specifications into dynamic logic, a natural
construction guarantees to reach “the” strongest specification of any pro-
gram. So even though strongest specifications per se are undecidable, their
construction is effective. This means that automatically checking arbitrary
formulas for being a strongest specification of a program is impossible on Tur-
ing machines, but, nevertheless, producing a single formula that is a strongest
specification can in fact be done. However, even though this constructed spec-
ification shares all computationally relevant conceptual properties with the
original program, deciding on the basis of the specification which program
properties really hold, is impossible on a Turing machine.1 Even worse, the
constructed strongest specification does not necessarily reach a higher degree
of readability than the original program source. Achieving legibility really is
the true challenge. Anyhow, a major advantage of this approach is that it is
no ad-hoc method, but embedded into a well-understood logic setting. Addi-
tionally, the corresponding algorithm is close to the theory and experiences
a natural embedding into logic.

A practical approach for constructing specifications automatically results
from using the automatic theorem proving capabilities for the dynamic logic
into which program specifications have been embedded. Therewith the ad-
vantages of the well-understood precise semantics and mechanisms of logic
extend to the specification construction process. Also the specific form of
the constructed formulas can be adjusted simply by changing the concise
local representation of the rewrite process, namely inference rules, instead
of having to alter a complex construction algorithm. Of course, this explicit

1Of course, Turing machines cannot decide those properties when given the program
source code, either.

65

formulation with rewrite rules does not completely alleviate the problem
of investigating the resulting normal forms. So the problem of readability
has a well-established setting, but still is highly non-trivial (undecidable).
Especially in imperative languages, by far the hardest readability problem
happens to impose the (unbounded) while loop, or equivalent means of un-
limited repetition. Further readability concerns involve reconciling branching
cases, especially subsumption cases.

Roughly speaking, what our practical sequent calculus approach can cur-
rently specify fully automatically are at least all those programs with a pri-
ori constant loops. It most certainly is not a coincidence that this is es-
sentially as far as a single step2 of abstract state machines [Gurevich, 2000,
Börger and Stärk, 2003] can go. Incomplete, still, is the concept of iteration
or repetition in our practical approach. Our theoretical investigations though
have shown that there is no principle obstacle with iteration. On the other
hand, how to achieve and express specifications of unbounded iteration also
in a readable manner is still an open research problem. Following the course
drafted in the proofs of our theoretical results, perhaps, would not lead to
the goal of simplicity and readability, despite the guarantee of yielding the
strongest specification. Even though simulating the theoretical proof result
would be simple to achieve in practice: just remove all while rules.

Of course, the central conceptual difficulty common to all specification
construction approaches also applies to our approach. After extracting the
specification from an implementation, all bugs of the implementation will
persist in the specification. Therefore, the main advantage of formal speci-
fications, namely improving program correctness by detecting discrepancies
between specification and implementation, is impossible for computed specifi-
cations. Still, automated specification construction helps to improve program
stability. In the face of an object-oriented program consisting of a mixture of
specified and unspecified classes, specification construction allows an integra-
tion into one formal model. And proofs about that formal model amount to
relative correctness statements about the user-specified classes. Even though
there cannot be a proper notion of correctness for the unspecified classes, the
specified classes can be verified to work as expected, given the actual effect
of the unspecified classes – independent of whether the unspecified classes
have the effect originally intended by the designer, or not. Furthermore, hu-

2A single step of an abstract state machine (ASM) consists of nested conditions and
parallel updates, i.e. elementary modifications to the interpretation of a non-rigid function
symbol at one position. The normal form attained by performing specification construction
on the basis of the current KeY calculus from [Ahrendt et al., 2004] consists of conditional
elementary modifications as well. The refined simultaneous updates of KeY even work in
parallel, reaching an apparent similarity with abstract state machines.

66

mans can check far simpler whether a program has the intended effect on the
basis of a (computed) specification, when the particular details of an imple-
mentation are ignored. For example, computed specifications can disregard
some performance optimisations, tricky special case checks or unnecessarily
complex implementations. Thus, under pragmatic aspects, automatic speci-
fication construction can be a valuable tool for the construction of program
systems.

What is worth noting is that all our specification computation does
not solve the frame problem completely, even though it may appear to at
first sight. Of course, only due to the additional knowledge of dealing with
strongest specifications, we can attempt to conclude that some state, which
has not been mentioned within the specification, should be free of change.3

Thus, with the resulting precise description of what changes and how, it
is tempting to assume that every other thing remains unchanged. This cir-
cumstance might be mistaken for a solution of the frame problem. But in
the presence of references, our statements about the code are subject to the
aliasing problem. So even though we are sure about every object that does
refer to or contain a value affected by the modifies list, it is difficult (unde-
cidable) to isolate all other objects that are free of any indirect influence. So
in the end we find ourselves in the surprising situation of having a precise
logical specification of what any program does without being able to infer
all program properties from it. On the other side, this situation is not worse
than with the initial program. A closer look even reveals that since we have
an effective procedure for constructing the strongest specification of every
program containing all computationally relevant information, but all non-
trivial properties of programs are undecidable, then we will still not be able
to decide them with an intermediate automatic construction of specifications.
In short we conclude that the intrinsic problems do not lie in constructing
specifications automatically from the implementation, but in proving theo-
rems about the specification. And so our approach is in a way “relatively
complete”. Still, from a pragmatic point of view, proving properties of the
specification usually is far simpler than proving complex statements just by
looking at the source code. Specifications, as constructed from the imple-
mentation algorithmically, at least form an appropriate intermediate formal
representation for proving statements about the program.

3For weak specifications, this will never be true because they could simply have forgot-
ten to mention some particular effect, but the strongest specification would not be allowed
to ignore any.

67

Appendix A

Properties

In this chapter, we state and prove properties of the basic concepts of substi-
tutions, rigidity, and specifications, which we need during our investigations.

A.1 Substitution

Lemma A.1.1 (Lemma of Substitution) If σ(z) is rigid for every
modal operator passed by during σ := [z 7→ σ(z)] 1 then
for each interpretation I for each state s

valI(s, σ(φ)) = valI[z 7→valI(s,σ(z))](s, φ)

Proof: Note that we implicitly presume that σ is admissible for φ, i.e. it does
not introduce new illegal bindings inside the scope of a quantifier. This can
always be achieved by α-conversion. The proof follows an induction over the
formula structure of φ. We take {?, ∃ , 〈〉} as a logical basis where ? denotes
an arbitrary binary logical connective, for example ⊃.

IH As induction hypothesis we use that the conjecture is true
for each formula ψ of a simpler structure than φ (so it is true for any
state and interpretation). In the following always let I be an arbitrary
interpretation, s an arbitrary state, and call Ĩ := I[z 7→ valI(s, σ(z))].

(I) If φ is an atomic formula then valI(s, σ(φ)) = valĨ(s, φ) by the substi-
tution lemma of classical logic.

1This is short saying for: If σ(z) is rigid for every modal operator passed by during the
application of the substitution σ to φ, i.e. whenever replacing an occurrence of z by σ(z),
the latter is rigid for any modal operators within whose scope z appeared in.

69

(II) If z /∈ FV (φ) then because of σ(φ) = φ and the fact that the variable
assignment for z does not have any effect on the evaluation of φ, the
conjecture is obvious.

(III) If φ = ψ ? χ for a logical connective ? then valI(s, σ(φ)) =

val(?)
(
valI(s, σ(ψ)), valI(s, σ(χ))

) IH
= val(?)

(
valĨ(s, ψ), valĨ(s, χ)

)
=

valĨ(s, φ).

(IV) If φ = ∃xψ then because of II we only have to prove
the case of z ∈ FV (φ). Then z 6= x as well as
x /∈ σ(z) or else there would have been a collision. Thus

valI(s, σ(φ)) = true
z 6=x
⇐⇒ there is d true = valI[x7→d](s, σ(ψ))

IH
=

valI[x7→d][z 7→valI[x7→d](s,σ(z))](s, ψ)
z 6=x
= valI[z 7→valI[x7→d](s,σ(z))][x7→d](s, ψ)

x/∈σ(z)
=

valI[z 7→valI (s,σ(z))][x7→d](s, ψ) = valĨ[x7→d](s, ψ) ⇐⇒ valĨ(s, φ) = true.

(V) If φ = [α]ψ then there are two possibilities.

(a) z ∈ FV (ψ) ⇒ σ(z) is rigid for α by premise ⇒ valI(s, σ(φ)) =

true ⇐⇒ for each sρ(α)s′ true = valI(s
′, σ(ψ))

IH
=

valI[z 7→valI(s′,σ(z))](s
′, ψ)

rigid
= valĨ(s

′, ψ) ⇐⇒ valĨ(s, φ) = true.

(b) z /∈ FV (ψ) ⇒ according to II applied to ψ, the conjecture is
immediate.

�

Note that there is just one simple induction left to generalise this lemma to
arbitrary substitutions of a greater set of support than just {z}. But because
of its awkward precise formulation we prefer to leave it at this intuitive level.

Example A.1.1 [i 7→ x] is rigid for modal operators passed by in i
.
= 1,

and in i
.
= 1 ∧ [x = x + 1]x

.
= 2, but not for i

.
= 1 ∧ [x = x + 1]x

.
= i or

i
.
= 1 ∧ [x = x + 1]a

.
= i. �

Remark A.1.2 If z /∈ t and t is rigid for every modal operator passed by
during the substitution2 then φ(t) ≡ ∀z (z

.
= t ⊃ φ(z)) ≡ ∃z (z

.
= t ∧ φ(z)) 3.

Proof: valI(s, ∃z (z
.
= t ∧ φ(z))) = valI(s, ∀z (z

.
= t ⊃ φ(z))) =

valI[z 7→valI (s,t)](s, φ(z))
Res. A.1.1

= valI(s, φ(t)). �

2which is implicit in the application φ(t), i.e. [λ1 7→ t]
3≡

(
λz.φ(z)

)
(t) [Fitting and Mendelsohn, 1998]

70

Remark A.1.3 Let t be any term, then � 〈x = t〉φ ⇐⇒ � x
.
= t ⊃ φ

Proof:

“⇒” Let s be any state with s � x
.
= t ⇒ sρ(x = t)s where s � φ by

premise.

“⇐” Let s be any state, and let sρ(x = t)s[x 7→ valI(s, t)]
︸ ︷︷ ︸

s′

⇒ s′ � x
.
=

t
premise
⇒ s′ � φ.

�

A.2 Rigidity

Remark A.2.1 A formula φ that is rigid for α satisfies for ? ∈ {∨,⊃} (but
not for ? ∈ {∧,↔,⊂})

φ ? [α]ψ ≡ [α](φ ? ψ)

Proof: by definition of rigid and the semantics of modal operators. More
precisely

? = ∨ “→” � φ ∨ [α]ψ
Res. A.2.2
⇒ � [α]φ ∨ [α]ψ ⇒� [α](φ ∨ ψ).

“←” � [α](φ∨ψ). Let s be any state. Assuming that s � ¬φ we have to
show that s � [α]ψ. Because of rigidity it is for each sρ(α)t t �

¬φ ⇒ t � ψ ⇒ s � [α]ψ.

? =⊃ φ ⊃ [α]ψ ≡ ¬φ ∨ [α]ψ
?=∨
≡ [α](¬φ ∨ ψ) ≡ [α](φ ⊃ ψ).

? =↔ A counter-example is a world with s � ¬φ , sρ(α)t , sρ(α)t′ , t � ¬φ ∧
ψ , t′ � ¬φ∧¬ψ. Thus s � ¬[α]ψ∧¬φ∧([α]ψ ↔ φ). But s 2 [α](ψ ⊃ φ)
since sρ(α)t , t � ψ ∧ ¬φ.

? = ∧ One direction is simple: φ ∧ [α]ψ
Res. A.2.2
⇒ [α]φ ∧ [α]ψ ≡

[α](φ ∧ ψ). But the other direction can be refused by
this counter example of a nonterminating program. Let
s � ¬φ and assume that there is no state t with sρ(α)t then s �

[α](φ ∧ ψ) ∧ [α]ψ but s 2 φ.4

4Be aware that s � ¬φ further implies s � [α]¬φ for rigid α. Still this does not contradict
the asserted s � [α]φ, because dynamic logic generally does not satisfy the axioms of system
D of modal logic.

71

�

Remark A.2.2 If φ is rigid for α then

φ � [α]φ

[α]φ, 〈α〉> � φ

〈α〉φ ≡ φ ∧ 〈α〉>

≡ [α]φ ∧ 〈α〉>

Proof:

1. φ � [α]φ by definition and the semantics of modal operators.

2. [α]φ, 〈α〉> � φ: Assuming the premises hold in some state s we know
that for each sρ(α)t t � φ. So let t be some state such that sρ(α)t,
which we know must exist only by 〈α〉>. Then because φ is rigid for α
it is valI(s, φ) = valI(t, φ) = true.

3. [α]φ ∧ 〈α〉> ≡ φ ∧ 〈α〉> is a consequence of the above two cases.

4. 〈α〉φ ≡ φ ∧ 〈α〉>

“→′′ Let s be any state in which 〈α〉φ is true, then there is sρ(α)t t �

φ
rigid
⇒ valI(s, φ) = valI(t, φ) = true , t � >.

“←′′ Let s be any state in which the premises are true. Then s �

φ , there is sρ(α)t t � >
rigid
⇒ valI(s, φ) = valI(t, φ) = true , s �

〈α〉φ.

�

A.3 Elementary Properties

Remark A.3.1 i /∈ FV (A) ⇒ ∀i (A↔ B) ≡ A↔ ∀i B

Proof:

1. I � A ⇒ for each d I[i 7→ d] � A. Thus since I[i 7→ d] � A ↔ B ⇒

I[i 7→ d] � B
d arbitrary
⇒ I � ∀i B ⇒ I � A↔ ∀i B

72

2. I 2 A ⇒ for each d I[i 7→ d] 2 A. Thus since I[i 7→ d] � A ↔ B ⇒

I[i 7→ d] 2 B
d arbitrary
⇒ I � ∀i¬B

presupposition of existence
⇒ I � ¬∀i B ⇒ I �

A↔ ∀i B

�

A.4 Specific Variations

Let us collect simple properties and variations of our formalisation which will
prove convenient to have, in some situations.

Remark A.4.1 Equivalent formulations of program specifications, which all
assume xpre to be a rigid constant or (rigid) variable include

(condition 2.1)

⇐⇒ � x
.
= xpre ⊃ [α]ψ

⇐⇒ � ∀xpre
(
x
.
= xpre ⊃ [α]ψ

)

⇐⇒ � Clconst(rigid)xpre

(
x
.
= xpre ⊃ [α]ψ

)

⇐⇒ � ∃xpre
(
x
.
= xpre ∧ [α]ψ

)

Proof: by Res. A.1.2 �

What we want the modifies list MV (α) to achieve is precisely that we
know in advance that every formula not referring to any symbol of MV (α)
is rigid with respect to α. More formally, we could take the assertion of
Res. A.4.2 as a defining condition for modifies lists. Only then can the search
for more manageable criteria start.

Remark A.4.2 Let φ be a formula with FV (φ) ∩ MV (α) = ∅, then φ is
rigid for α.

Proof: �

73

Bibliography

[Ahrendt et al., 2004] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese,
M., Hähnle, Menzel, W., Mostowski, W., Roth, A., Schlager, S., and
Schmitt, P. H. (2004). The KeY Tool. Software and System Modeling.
To appear.

[Ammarguellat, 1992] Ammarguellat, Z. (1992). A control-flow normaliza-
tion algorithm and its complexity. Software Engineering, 18(3):237–251.

[Beckert and Schmitt, 2003] Beckert, B. and Schmitt, P. H. (2003). Program
verification using change information. In Proceedings, Software Engineer-
ing and Formal Methods (SEFM). Brisbane.

[Börger and Stärk, 2003] Börger, E. and Stärk, R. (2003). Abstract State
Machines. A Method for High-Level System Design and Analysis. Springer-
Verlag.

[Bundy and Lombart, 1995] Bundy, A. and Lombart, V. (1995). Relational
rippling: A general approach. In IJCAI, pages 175–181.

[Bundy et al., 1993] Bundy, A., Stevens, A., van Harmelen, F., Ireland, A.,
and Smaill, A. (1993). Rippling: A heuristic for guiding inductive proofs.
Artificial Intelligence, 62(2):185–253.

[Comon, 2001] Comon, H. (2001). Inductionless Induction, volume 1 of
Handbook of Automated Reasoning, pages 913–962. Elsevier and MIT
Press.

[Detlefs et al., 1998] Detlefs, D. L., Rustan, K., Leino, M., Nelson, G., and
Saxe, J. B. (1998). Extended static checking. Research Report 159, Com-
paq Systems Reseach Center.

[Dijkstra, 1976] Dijkstra, E. W. (1976). A Discipline of Programming.
Prentice-Hall.

75

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998).
First-Order Modal Logic. Kluwer Academic Publishers, 1st edition.

[Flanagan and Leino, 2001] Flanagan, C. and Leino, K. R. M. (2001). Hou-
dini, an annotation assistant for ESC/Java. Lecture Notes in Computer
Science, 2021:500 et seqq.

[Flanagan, 2002] Flanagan, C. amd Qadeer, S. (2002). Predicate abstraction
for software verification. In 29th POPL. ACM.

[Gabbay and Ohlbach, 1992] Gabbay, D. M. and Ohlbach, H. J. (1992).
Quantifier elimination in second–order predicate logic. In Nebel, B., Rich,
C., and Swartout, W., editors, Principles of Knowledge Representation and
Reasoning (KR92), pages 425–435. Morgan Kaufmann.

[Gannod et al., 1998] Gannod, G. C., Chen, Y., and Cheng, B. H. C. (1998).
An automated approach for supporting software reuse via reverse engi-
neering. In Automated Software Engineering, page 94 et seqq.

[Gannod and Cheng, 1997] Gannod, G. C. and Cheng, B. H. C. (1997). A
formal automated approach for reverse engineering programs with point-
ers. In Automated Software Engineering, pages 219–226.

[Gannod and Cheng, 1995] Gannod, G. C. and Cheng, B. H. C. (July 1995).
Strongest postcondition semantics as the formal basis for reverse engi-
neering. In WCRE ’95: Proceedings of the Second Working Conference on
Reverse Engineering, (Toronto, Ontario; July 14-16, 1995), pages 188–197.
IEEE Computer Society Press.

[Gosling et al., 1996] Gosling, J., Joy, B., Steele, G. L., and Bracha, G.
(1996). The Java Language Specification. The Java Series. Addison-Wesley,
Massachusetts.

[Gurevich, 2000] Gurevich, Y. (2000). Sequential abstract state machines
capture sequential algorithms. ACM Transactions on Computational
Logic, 1:77–111.

[Harel, 1984] Harel, D. (1984). Dynamic Logic, volume II of Handbook of
Philosophical Logic, chapter 10, pages 497–604. Reidel, Dordrecht, 1 edi-
tion.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic
logic. MIT Press.

76

[Harel et al., 2001] Harel, D., Kozen, D., and Tiuryn, J. (2001). Dynamic
Logic, volume 4 of Handbook of Philosophical Logic, chapter 3. Kluwer
Academic Publishers, 2 edition.

[J2ME, 2003] J2ME (2003). Java 2 Platform, Micro Edition.
http://java.sun.com/j2me/.

[JavaCard, 1999] JavaCard (1999). Java Card technology.
http://java.sun.com/products.javacard/.

[Rumbaugh et al., 1998] Rumbaugh, J., Jacobson, I., and Booch, G. (1998).
The Unified Modeling Language Reference Manual. Addison-Wesley.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., and Booch, G. (1999).
The Unified Modeling Language User Guide. Addison-Wesley.

[Schlager, 2000] Schlager, S. (2000). Erweiterung der Dynamischen
Logik um temporallogische Operatoren. Master’s thesis, Univer-
sität Karlsruhe, Fakultät für Informatik. In German. Available at:
http://i12www.ira.uka.de/∼schlager/publications/Studienarbeit.ps.gz.

[Schmitt, 2000] Schmitt, P. H. (2000). Formale Systeme. Vorlesungsskriptum
Fakultät für Informatik , Universität Karlsruhe.

[TogetherSoft, 2003] TogetherSoft (2003). TogetherSoft WWW homepage.
http://www.togethersoft.com/.

[van Benthem, 2001] van Benthem, J. (2001). Correspondence Theory, vol-
ume 3 of Handbook of Philosophical Logic, chapter 4. Kluwer Academic
Publishers, 2 edition.

77

Acknowledgements

At this place I would like to thank all those who kindly supported me during
the work on this thesis. First of all, I am very grateful to Bernhard Beckert,
whose advice in the area of logic was crucial for the development of this ap-
proach, and who always knew how to come to the essential part. Bernhard
Beckert also contributed to a great extent in the creation of the initial con-
cepts. I would also like to express my highest gratitude to Professor Peter
Schmitt for providing the opportunity to investigate such an exciting and the-
oretically inspired topic, and for comments on the work. Many thanks deserve
Andreas Roth and Richard Bubel for their continuous help on the implemen-
tation, and their extensive knowledge of the KeY System internals. Also I
would like to thank Philipp Rümmer for worthwhile discussions about how
things really are and for indispensable support with complex TeX macros.
And last but not least, I want to say thanks to my wife for her patience, and
to my parents for their support.

i

	Introduction
	Intention
	Context
	Related Work
	Notation

	Formalisation
	Programming Language
	Specifications
	Choosing a Preference Ordering
	Terminology

	Computability Analysis
	Hop States
	Maximal Specifications

	The Modifies List
	Generic Modifies List
	Lowering Higher-Order Logic
	Practical Treatment

	Sequent Calculus Approach
	Overview
	Constructing Special Proof Obligations
	State Change Accumulation
	Specification Extraction
	Quintessence
	Examples
	Specification Construction Calculus

	Extensions
	Change Equations
	Specification Completion
	Weak Specifications

	Implementation
	User interaction
	Details
	Limitations

	Summary
	Properties
	Substitution
	Rigidity
	Elementary Properties
	Specific Variations

