Flock on the March

A Meta-Proof of a Meta-Model

What am I modeling?

- Boids
 - Infinite many
 - Same destination
 - Not a transportation protocol
- Obstacles
 - Infinite many
 - Arbitrary shape
 - Arbitrary size
 - Pass some
 - Distant enough

Project Highlights

- Without Distributed DL!
 - This model is constructed in a certain way
- Framework , Modular
 - Control
 - Proof
- Analogy
 - Functions
 - Specs for functions
 - Contracts

Leader-Followers

- One leader in the center.
 - Potentially be virtual
 - Radius = 0
- Followers on the fixed track
 - Never touch another track
 - Followers in the same track
 - Sync the velocity
- Proof for one track
 - SAFE FOR ALL
 - Not for a specific track radius

Safe for one ---> Safe for all

One simple invariant

$$\begin{split} &R_{\text{track}}^{(K)} + \max \left(\bigcup_{i \in F^{(K)}} \left\{ R_{\text{follower}\,i}^{(K)} \right\} \right) \leqslant \\ &R_{\text{track}}^{(K+1)} - \max \left(\bigcup_{i \in F^{(K+1)}} \left\{ R_{\text{follower}\,i}^{(K+1)} \right\} \right) \end{split}$$

Framework Outline

- Follower's circular motion
 - Contracts
 - Control
 - Safety
 - Requirements
- Obstacles modeling
 - Keep Certain distance away from the obstacle would be safe
- Cross Safe Buffer(Extended Boundary)
 - Cross the buffer
 - Different types of crossing control
- Pathing Algorithm

Followers' Circular Motion

- Formal Contract
 - Control
 - API
 - Perform angular acceleration around leader
 - Safety (Ensures)
 - never go out of the fixed track
 - When not asked
 - if multiple followers on same track
 - they never collide
 - sync is one option
 - Indication flag of whether on the same half circle

Followers' Circular Motion

- Formal Contract
 - Control
 - Safety (Ensures)
 - Requirement
 - Constraints on leader's speed and acceleration when moving around the leader
 - Eg.
 - Cars, Ships
 - Walking robots
 - UFO, disklike vehicles

Obstacles modeling

- Extended boundaries (Safe Buffer)
 - Depend on the longest radius of followers
 - Draw such circles at all nodes
 - Connect them using tangent lines
 - Collision free
 - Zero radius speed at boundary
 - Between any point on the
 boundary and any point on the
 obstacle at least R distance

$$\begin{aligned} &(x_{\mathrm{leader}} - x_{\mathrm{ob}})^2 + (y_{\mathrm{leader}} - y_{\mathrm{ob}})^2 = R_{\mathrm{boudary}}^2 \\ &\to v_x \times (x_{\mathrm{ob}} - x_{\mathrm{leader}}) + v_y \times (y_{\mathrm{ob}} - y_{\mathrm{leader}}) \leqslant 0 \end{aligned}$$

$$\mathbf{\hat{D}} \mathbf{is_{ex}} \geqslant R_{\mathrm{track}}^{(N)} + \max \big(\bigcup_{i \in F^{(N)}} \big\{ R_{\mathrm{follower}\,i}^{(N)} \big\} \big)$$

Obstacles modeling

- Other ways to define Extended boundaries (Safe Buffer)
 - Still depend on the longest radius of followers
 - Draw larger circles
 - Follower have detect range
 - Collision free outside
 - Not necessarily Zero radius speed at boundary (efficiency)
 - Cons
 - Circular motion while moving
 - o Pros
 - No need for everyone to detect all the time

Proved Basic algorithm

Proved Basic algorithm

Proved Basic algorithm

- Leader's movement never happens together with Followers' circular motion
- Compatible with most circular motion strategies

Safety

$$\begin{split} & \text{safe rad} \leqslant 3.14 + \sqrt{\frac{R_{\text{leader}}^2 - R_{\text{follower}}^2}{R_{\text{leader}}^2}} \\ & \text{safe rad} \geqslant 3.15 - \sqrt{\frac{R_{\text{leader}}^2 - R_{\text{follower}}^2}{R_{\text{leader}}^2}} \end{split}$$

Pathing

- Satisfy the constraint given by safe buffer.
- Satisfy the constraint given by circular motion layer
 - No need for circular motion in pathing due to our extended boundary
- In my case, It is just a simple one moving boids avoiding static obstacles
- We could implement A star on top of this, and mark points on extended boundary are accessible to each other.
 - Call cross buffer algorithm to access
- This could be done manually as well
 - Driver needs to follow the constraint

Split and Merge

- Split
 - Let the leader stop and outermost followers stop
 - the splitted followers become obstacles
 - Just satisfy our extended boundary requirement
- Merge
 - Stop at the extended boundary of the to-be-merged follower.
 - Then the follower is just at its track radius away from the leader
 - Then we can remove that extended boundary generated by the follower
 - Send control to the follower to make it follow
 - Need to update all other extended boundary size accordingly.
 - After merging , leader should not inside any other safe buffer

 $\mathbb{D}is_{\text{ex}} \ge R_{\text{track}}^{(N)} + \max\left(\bigcup_{i \in F^{(N)}} \left\{R_{\text{follower }i}^{(N)}\right\}\right)$

$$\begin{split} R_{\text{track}}^{(K)} + \max \left(\bigcup_{i \in F^{(K)}} \left\{ R_{\text{follower } i}^{(K)} \right\} \right) \leqslant \\ R_{\text{track}}^{(K+1)} - \max \left(\bigcup_{i \in F^{(K+1)}} \left\{ R_{\text{follower } i}^{(K+1)} \right\} \right) \end{split}$$

Framework Outline

- Follower's circular motion
 - Contracts
 - Control
 - Safety
 - Requirements
- Obstacles modeling
 - Keep Certain distance away from the obstacle would be safe
- Cross Safe Buffer(Extended Boundary)
 - Cross the buffer
 - Different types of crossing control
- Pathing Algorithm

The End

Special credit to my TA Nathan, I got this project idea when discussing with him 4 days before deadline, and decide to change to this, i think is cool, idea

Thanks for everyone listening, any question?

ZIHAN ZHOU zihanz@andrew.cmu.edu QCS CLASS OF 2017