Differential Equations via Temporal Logic and Infinitesimals

Evan Cavallo
15-824 Foundations of Cyber-Physical Systems

May 5, 2016

model evolution of state using temporal logic over a time domain

model differential time using time domain with infinitesimals

Temporal Logic Foundation

1. modal operator $\bigcirc_{t} \varphi: \varphi$ holds after time t
2. two kinds of variable:

- constant variables A - static over time

$$
\text { e.g. } A=5 \leftrightarrow \bigcirc_{t}(A=5)
$$

- differentiable variables x - change over time

$$
\begin{aligned}
e & ::=x|A| 0|1| \varepsilon|e+e| e \cdot e \\
\varphi & :=e=e|e \leq e| \varphi \wedge \varphi|\neg \varphi| \forall x \cdot \varphi|\forall A \cdot \varphi| \bigcirc_{e} \varphi
\end{aligned}
$$

Infinitesimals

two common approaches:

- Non-Standard Analysis
- model-theoretic
- non-constructive
- invertible ($\varepsilon>0$ very small, $1 / \varepsilon$ very large)
- Smooth Infinitesimal Analysis
- algebra / algebraic geometry
- nilpotent $\left(\varepsilon>0, \varepsilon^{2}=0\right)$

Ring of Dual Numbers

$$
\mathbb{R}[\varepsilon]=\mathbb{R}[x] /\left(x^{2}\right)=\{a+b \varepsilon: a, b \in \mathbb{R}\}
$$

1. $\left(a_{1}+b_{1} \varepsilon\right)+\left(a_{2}+b_{2} \varepsilon\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \varepsilon$
2. $\left(a_{1}+b_{1} \varepsilon\right)\left(a_{2}+b_{2} \varepsilon\right)=a_{1} a_{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) \varepsilon$
3. lexicographic ordering
4. $P(a+\varepsilon)=P(a)+P^{\prime}(a) \cdot \varepsilon$

Syntax \& Axiomatics

$$
(a \approx b): \equiv(a \cdot \varepsilon=b \cdot \varepsilon)
$$

$$
\begin{array}{rlrl}
(x+y)+z & =x+(y+z) & & " \leq \text { is a total order" } \\
x+y & =y+x & x \leq y \rightarrow y+z \leq x+z \\
x \cdot y & =y \cdot x & & 0 \leq x \wedge 0 \leq y \rightarrow 0 \leq x \cdot y \\
x+0 & =x & & 0<\varepsilon \\
x \cdot 1 & =x & &
\end{array}
$$

$$
\begin{gathered}
\exists y \cdot x+y=0 \\
x \not \approx 0 \rightarrow \exists y \cdot x \cdot y=1 \\
x \approx 0 \rightarrow \exists y \cdot x=y \cdot \varepsilon \\
\exists A \cdot A=x
\end{gathered}
$$

Syntax \& Axiomatics

$$
\begin{gathered}
\bigcirc_{t}(\varphi \wedge \psi) \leftrightarrow\left(\bigcirc_{t} \varphi\right) \wedge\left(\bigcirc_{t} \psi\right) \\
\left(\bigcirc_{t} \neg \varphi\right) \leftrightarrow \neg \bigcirc_{t} \varphi \\
\left(\bigcirc_{t} \forall A \cdot \varphi\right) \leftrightarrow \forall A \cdot\left(\bigcirc_{t} \varphi\right) \\
\left(\bigcirc_{t_{1}} \bigcirc_{t_{2}} \varphi\right) \leftrightarrow \exists A .\left(\bigcirc_{t_{1} t_{2}}=A\right) \wedge \bigcirc_{t_{1}+A} \varphi
\end{gathered}
$$

Syntax \& Axiomatics

$$
\begin{aligned}
\exists!\tilde{I} \cdot \forall X \cdot x= & X \rightarrow \forall B \cdot \bigcirc_{B \cdot \varepsilon}(x=X+A \cdot B \cdot \varepsilon) \\
& (\text { Kock-Lawvere axiom })
\end{aligned}
$$

$$
\exists \tilde{!} X_{f} . \forall x . t \geq 0 \wedge x \approx x_{i} \rightarrow
$$

$$
\left(\forall 0<A<t . \bigcirc_{A}\left(\forall X . x=X \rightarrow \bigcirc_{\varepsilon} x=X+e(X)\right)\right) \rightarrow \bigcirc_{t}\left(x \approx X_{f}\right)
$$

(uniqueness of solutions)

Semantics

$$
x \mapsto D_{0}(x), D_{1}(x): \mathbb{R} \rightarrow \mathbb{R}, D_{0}(x) \text { differentiable }
$$

$$
\begin{aligned}
\llbracket x \rrbracket_{u}^{D ; C} & =D_{0}(x)\left(u_{0}\right)+\left(D_{1}(x)\left(u_{0}\right)+\left(D_{0}(x)\right)^{\prime}\left(u_{0}\right) \cdot u_{1}\right) \cdot \varepsilon \\
\llbracket A \rrbracket_{u}^{D ; C} & =C(A) \\
\llbracket 0 \rrbracket_{u}^{D ; C} & =0 \\
\llbracket 1 \rrbracket_{u}^{D ; C} & =1 \\
\llbracket \varepsilon \rrbracket_{u}^{D ; C} & =\varepsilon \\
\llbracket e_{1}+e_{2} \rrbracket_{u}^{D ; C} & =\llbracket e_{1} \rrbracket_{u}^{D ; C}+\llbracket e_{2} \rrbracket_{u}^{D ; C} \\
\llbracket e_{1} \cdot e_{2} \rrbracket_{u}^{D ; C} & =\llbracket e_{1} \rrbracket_{u}^{D ; C} \cdot \llbracket e_{2} \rrbracket_{u}^{D ; C}
\end{aligned}
$$

Differential Equations

$\left[x^{\prime}=\theta(x)\right] \varphi$ becomes (almost)

$$
\forall r \geq 0 .\left(\forall 0<t<r . O_{t}\left(x^{\prime} \text { is } \theta\right)\right) \rightarrow \bigcirc_{r} \varphi
$$

where x^{\prime} is θ is shorthand for

$$
\forall X . x=X \rightarrow \bigcirc_{\varepsilon} x=X+\theta(X) \cdot \varepsilon
$$

Why bother?

1. Good question...
2. Derivative facts for free: x^{\prime} is θ is shorthand for

$$
\forall X \cdot x=X \rightarrow \bigcirc_{\varepsilon} x=X+\theta(X) \cdot \varepsilon
$$

If x_{1}^{\prime} is θ_{1} and x_{2}^{\prime} is θ_{2} then

$$
\bigcirc_{\varepsilon} x_{1} x_{2}=\left(X_{1}+\theta_{1}\left(X_{1}\right) \cdot \varepsilon\right)\left(X_{2}+\theta\left(X_{2}\right) \cdot \varepsilon\right)
$$

$$
\left(X_{1}+\theta_{1}\left(X_{1}\right) \cdot \varepsilon\right)\left(X_{2}+\theta\left(X_{2}\right) \cdot \varepsilon\right)=X_{1} X_{2}+\left(X_{1} \theta\left(X_{2}\right)+X_{2} \theta\left(X_{1}\right)\right) \cdot \varepsilon
$$

