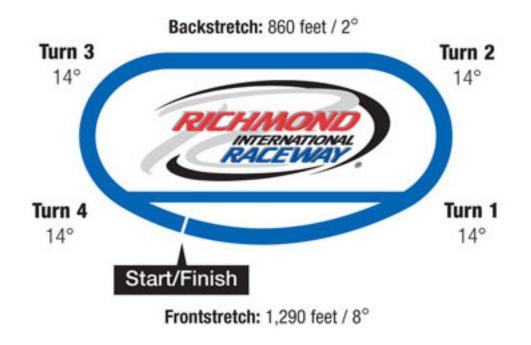
NASCAR Refueling Challenges:

The Strategy Behind a Pit Stop


Connie Wang

Outline

- Background
- Model Highlights
- Safety and Efficiency
- Proof Highlights
- Conclusion

Background

- NASCAR races
 - 36 total races
 - 34 oval tracks
 - .526 2.66 miles long
 - 188 500 laps
- Refueling rules
 - No sensors to monitor exact gas level
 - 24 gallons per pit stop

Model Highlights

- Controls
 - if fuel > fc * v * T; continue;
 - *if* $fuel \leq fc * v * T$; fuel = max;
- ODEs
 - x' = v * dx
 - y' = v * dy
 - dx' = -dy
 - dy' = dx
 - fuel' = -fc * v (linear)
 - fuel' = -(fc * v * t + c) (quadratic)

Safety and Efficiency

- Stay on track
 - $x^2 + y^2 = rad^2$
- Sufficient fuel
 - $fuel \ge 0$
- Do not stop unnecessarily
 - if fuel > fc * v * T; continue;

Proof Highlights (on track)

- Loop invariants
 - $x^2 + y^2 = rad^2$
 - $dx^2 + dy^2 = 1$
 - dx * v = -y
 - dy * v = x
 - $rad \ge 0$
- Differential Cuts
 - dx * v = -y
 - dy * v = x

Proof Highlights (sufficient fuel)

- Loop Invariants
 - fc > 0
 - *T* > 0
 - *fuelinit* > *fc* * *v* * *T* (linear)
 - fuelinit > fc $*v *T^2 + c *T$ (quadratic)
 - max > vc * v * T
- Differential Cuts
 - fuel = fuelinit fc * v * T (linear)
 - $fuel = fuelinit (fc * v * T^2 + c * T)$ (quadratic)

Conclusion

- Can CPS models help NASCAR teams?
 - Proof helps devise strategies
 - Use of algorithmic CPS controllers
- Future work
 - Acceleration/deceleration
 - Time constraints
 - Multiple cars
 - Tire degradation

Thanks!

The Strategy Behind a Pit Stop by Connie Wang