Orbital Mechanics of Gravitational Slingshots

Adam Moran and John Mann

15-424: Foundations of Cyber-Physical Systems

Outline

- Overview
- The Model
- The Proof
- Limitations
- Future Work

Gravity Slingshots

Background

- A gravity slingshot is a maneuver that results in an energy transfer between an approaching spacecraft and large celestial body.
 - Can be used to speed up, slow down, and redirect vehicles.
- When the spacecraft approaches, it gains speed as it falls towards the planet, then gains enough speed to surpass escape velocity (V_e)

Motivation

- Fuel = money for space travel.
- Bringing more fuel into orbit requires even more fuel to lift the fuel.
 Gravity slingshots can save a lot of fuel, and therefore make deepspace missions more cost-effective.

The Model

Safety

$$r_{planet} + h_{atmosphere} \le r_{orbit}$$

$$(\Theta \leq \Theta_{\text{sling}}) \rightarrow (v \leq v)$$

v' = x*thrust + c,

theta' = v/orbitr

$$r_{planet}$$
radius of planet r_{orbit} radius of orbit $h_{atmosphere}$ atmosphere Θ current angle Θ_{sling} desired angle v current velocity v_e escape velocity x scale factorccosinessine

Putting it together

 $(/* init */) \rightarrow$

](

```
{ thrust := *; ?(thrust < v<sub>e</sub> - v); }
```

c' = -s, s' = c, v' = x*thrust + c, $\Theta' = v/r_{orbit}$, t' = 1

Model

 $\begin{array}{l} \mathsf{r}_{\mathsf{planet}} + \mathsf{h}_{\mathsf{atmosphere}} \leq \mathsf{r}_{\mathsf{orbit}} & \land \\ (\Theta \leq \Theta_{\mathsf{sling}}) \rightarrow (\mathsf{v} \leq \mathsf{v}_{\mathsf{e}}) \end{array}$

Safety and Efficiency

Putting it together

(/* init */) \rightarrow

](

{ thrust := *; ?(thrust < v_e - v); }

c' = -s, s' = c, $v' = x^{*}thrust + c,$ $\Theta' = v/r_{orbit},$ t' = 1

Proof: Key Invariants

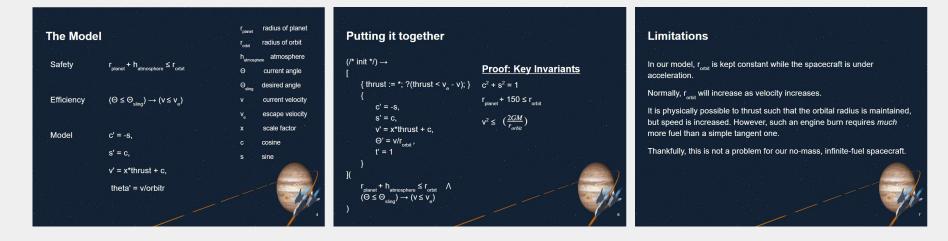
 $c^{2} + s^{2} = 1$ $r_{planet} + 150 \le r_{orbit}$

 $v^2 \leq \left(\frac{2GM}{r_{orbit}}\right)$

Limitations

In our model, r_{orbit} is kept constant while the spacecraft is under acceleration.

Normally, r_{orbit} will increase as velocity increases.


It is physically possible to thrust such that the orbital radius is maintained, but speed is increased. However, such an engine burn requires *much* more fuel than a simple tangent one.

Thankfully, this is not a problem for our no-mass, infinite-fuel spacecraft.

Future Work

- Make the spacecraft more realistic.
 - Give it a dry mass and wet mass?
 - Have its acceleration change according to rocket equation physics?
 - Improved orbital physics.
 - In a more realistic and fuel-efficient simulation, the orbital radius would increase as the velocity of the spacecraft increases.

Questions?