
Midterm 2

15-317: Constructive Logic

November 5, 2009

Name: S Andrew ID: wlovas

Instructions

• This exam is closed-book, but one two-sided sheet of notes is permitted.

• There are five problems, each with several parts. Not all problems are the same
size or difficulty. You have 80 minutes to complete the exam.

• When writing proofs, remember to label each inference with the rule used.

• You may find it helpful to construct your proofs on scratch paper (such as the back
of a page) before writing it clearly in the space provided.

• Most importantly,

D’ P

Good luck!

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total

Score

Max 25 35 55 20 15 150

Grader
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1 Logic Programming (25 points)

Consider a predicate intersect(+list, +list)which holds of any two lists that share
an element, defined using the member predicate on lists.

member(X, [X|Xs]). intersect(L1, L2) :-

member(X, [Y|Ys]) :- member(X, L1),

member(X, Ys). member(X, L2).

Task 1 (10 pts). What mode or modes must member satisfy in order for intersect to
satisfy mode (+, +)? Explain in detail why member satisfies this mode or modes.

Solution. member must satisfy two modes, (-, +) and (+, +). The first subgoal treats
L1 as an input and X as an output, enumerating all members of L1 through backtracking;
the second subgoal treats both X and L2 as inputs, checking that X is a member of L2.

We can show that member satisfies both modes by examining its clauses.

• Mode (-, +):

1. First clause: Assume [X|Xs] is ground. We must show that X is ground, and
it is by assumption.

2. Second clause: Assume [Y|Ys] is ground. We must show that X is ground.
For the subgoal to be well-moded, we must show that Ys is ground, which it
is by assumption. If the subgoal succeeds, we learn that X is ground, which
is what we needed to show.

• Mode (+, +):

1. First clause: Assume X and [X|Xs] are ground. There are no output argu-
ments and no subgoals, so there is nothing to show.

2. Second clause: Assume X and [Y|Ys] are ground. For the subgoal to be
well-moded, we must show that X and Ys are ground, which they are by
assumption. �

Task 2 (5 pts). Are there any other modes that intersect can be given, besides (+, +)?
Explain your answer.

Solution. No, there aren’t. A cursory examination of the clauses defining member shows
that its second argument can never be an output—in the first clause, there is no way to
know that Xs is ground, and in the second, there is no way to know that Y is ground.
For intersect to output either L1 or L2, the member predicate would have to output its
second argument, so since it cannot, the only mode intersect can satisfy is (+, +). �

(Problem continues on next page)
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Consider the following ways of introducing cuts into the code for intersect to cut
off backtracking. We are only interested in the behavior on the given mode, where L1
and L2 are both inputs and valid lists.

Task 3 (5 pts). Is the following cut red or green? If it is red, exhibit a query provable
without the cut that isn’t provable with the cut. If it is green, explain why no such query
exists.

intersect(L1, L2) :-

member(X, L1),

!,

member(X, L2).

Solution. This cut is red: the cut will commit proof search to the first member of L1 it
finds, failing if the two lists intersect on any other member of L1. For example, the query
intersect([1,2], [2])will fail, but it would succeed without the cut. �

Task 4 (5 pts). Is the following cut red or green? If it is red, exhibit a query provable
without the cut that isn’t provable with the cut. If it is green, explain why no such query
exists.

intersect(L1, L2) :-

member(X, L1),

member(X, L2),

!.

Solution. This cut is green: since intersect has mode (+, +), the only possible success-
ful answer is “true”, and the cut only commits once we have found a successful answer.
Any further search could only discover another way the lists intersect, but we already
know they intersect once we reach the cut. �
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2 G4ip (35 points)

Recall Dyckhoff’s contraction-free sequent calculus G4ip.

Task 1 (10 pts). Give a G4ip derivation of the sequent · −→ ¬¬(P ∨ ¬P). Assume the
proposition P is atomic and ¬A is a notational definition, as usual.

Solution. Expanding all the negations into their notational definitions, we must prove
· −→ ((P ∨ (P ⊃ ⊥)) ⊃ ⊥) ⊃ ⊥. The proof follows, with the active formulae in each
conclusion highlighted.

⊥ ,P,⊥ ⊃ ⊥ −→ ⊥
⊥L

P ⊃ ⊥ , P ,⊥ ⊃ ⊥ −→ ⊥
P⊃L

P ⊃ ⊥, ⊥ −→ ⊥
⊥L

P ⊃ ⊥, (P ⊃ ⊥) ⊃ ⊥ −→ ⊥
⊃⊃L

(P ∨ (P ⊃ ⊥)) ⊃ ⊥ −→ ⊥
∨⊃L

· −→ ((P ∨ (P ⊃ ⊥)) ⊃ ⊥) ⊃ ⊥
⊃R

�

(Problem continues on next page)
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Consider a variant of G4ip with a “memoizing” right rule for conjunction.

Γ −→ A Γ,A −→ B

Γ −→ A ∧ B
∧R′

It can be difficult to tell whether such a rule represents an optimization or a complication
of the decision procedure embodied by G4ip.

Task 2 (10 pts). Find a derivation of a sequent that “saves time” using ∧R′. The smaller
derivation should be identical to the larger aside from some work that is saved thanks
to the memoizing rule.

Solution. There are many examples. Anytime more than one rule is required to prove an
atomic proposition, memoizing can replace a proof of it with an immediate application
of the init rule. For instance:

P, Q −→ Q
init

P , P ⊃ Q −→ Q
P⊃L

P,P ⊃ Q, Q −→ Q
init

P,P ⊃ Q −→ Q ∧ Q
∧R′

�

The right subproof could have been the same as the left, but instead it was one shorter
by immediately appealing to “init”.

(Problem continues on next page)
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Task 3 (15 pts). Find a derivation of a sequent that “wastes time” using ∧R′. The larger
derivation should be identical to the smaller aside from some extra work that could be
done thanks to the memoizing rule.

Solution. There are again many examples. Almost any non-atomic formula “memoized”
into the context can be needlessly broken down. For instance:

P −→ P
init

P −→ P
init

P −→ P ∧ P
∧R

P ,P,P −→ P
init

P, P ∧ P −→ P
∧L

P −→ (P ∧ P) ∧ P
∧R′

The right subproof could have concluded with an immediate application of “init”, but
instead it broke down the memoized assumption first.

Although the extra work is never necessary to a proof—a short proof can always be
weakened with an extra assumption—a given proof search strategy will not necessarily
find the shortest proof. In this case, it is easy to imagine a theorem prover that would
break down the new assumption just to be safe, since conjunction is asynchronous on
the left. �
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3 Classical Sequent Calculus (55 points)

We may define a classical sequent calculus by allowing a sequent to have multiple
conclusions. The main judgement now becomes Γ # ∆, with the interpretation that if
all of the propositions in Γ are true, then at least one of the propositions in ∆ is true, or
equivalently: if all of the propositions in Γ are true and all of the propositions in ∆ are
false, then they are in contradiction.

Γ,P # P,∆
init

Γ # A,B,∆

Γ # A ∨ B,∆
∨R

Γ,A # ∆ Γ,B # ∆

Γ,A ∨ B # ∆
∨L

Γ,A # ∆

Γ # ¬A,∆
¬R

Γ # A,∆

Γ,¬A # ∆
¬L

We do not need rules for A ∧ B, A ⊃ B, >, or ⊥ because these can be defined in classical
logic.

Task 1 (5 pts). Give a derivation of the sequent · # P ∨ ¬P in this calculus. Assume the
proposition P is atomic.

Solution.

P # P
init

· # P, ¬P
¬R

· # P ∨ ¬P
∨R

�

(Problem continues on next page)
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The Cut Principle for this calculus is as follows:

Theorem (Cut). If Γ # A,∆ and Γ,A # ∆, then Γ # ∆.

Task 2 (20 pts). Prove the principal case of the Cut Principle for A ∨ B. Given

D =

D1

Γ # A,B,∆

Γ # A ∨ B,∆
∨R and E =

E1

Γ,A # ∆
E2

Γ,B # ∆

Γ,A ∨ B # ∆
∨L,

come up with a derivation of Γ # ∆. You may assume the following lemmas:

Lemma (Left Weakening). IfΓ # ∆, thenΓ,A # ∆with a structurally identical deduction.

Lemma (Right Weakening). If Γ # ∆, then Γ # A,∆with a structurally identical deduc-
tion.

Solution. The desired result follows from Right Weakening and two appeals to the
inductive hypothesis.

Γ,A # B,∆ By Right Weakening on E1.
Γ # B,∆ By i.h. on A,D1, and above.
Γ # ∆ By i.h. on B, above, and E2.

�

(Problem continues on next page)
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Recall that an invertible rule is one whose conclusion entails its premises. For the next
two Tasks, you may assume the following structural properties of the classical sequent
calculus as lemmas:

Lemma (Left Weakening). If Γ # ∆, then Γ,A # ∆.

Lemma (Right Weakening). If Γ # ∆, then Γ # A,∆.

Lemma (Identity). For any Γ, ∆, and A, we can derive Γ,A # A,∆.

Lemma (Cut). If Γ # A,∆ and Γ,A # ∆, then Γ # ∆.

It turns out that all rules in the calculus are invertible.

Task 3 (15 pts). Prove that the ∨R rule is invertible.

Solution. Suppose the conclusion holds: Γ # A ∨ B,∆. We must derive the premise:
Γ # A,B,∆.

First, by two applications of Right Weakening on the assumption: Γ # A ∨ B ,A,B,∆.
Call this derivationD.

Then, we can derive the following using ∨L and Identity:

(Identity on A)

Γ,A # A,B,∆

(Identity on B)

Γ,B # A,B,∆

Γ, A ∨ B # A,B,∆
∨L

Call this derivation E.
Finally, by Cut on A ∨ B and the derivations D and E, we conclude Γ # A,B,∆, as

required. �

(Problem continues on next page)
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Task 4 (5 pts). We can interpret the inference rules as a proof search calculus, working
bottom-up. Does proof search in this calculus always terminate? If so, explain why. If
not, give a sequent that causes proof search to loop.

Solution. Yes, proof search always terminates: each rule’s premises contain one fewer
connective than its conclusion. Since each rule application eliminates one connective
and sequents are finite, we always eventually reach a state where no more rules may be
applied. �

Task 5 (10 pts). Since we are in classical logic, we can define A ⊃ B as ¬A ∨ B. Give
derived left and right rules for A ⊃ B based on this definition.

Solution. By applying the rules for disjunction and negation to a general conclusion, we
can read offwhat the derived rules for implication should be.

Γ,A # B,∆

Γ # ¬A,B,∆
¬R

Γ # ¬A ∨ B,∆
∨R gives us

Γ,A # B,∆

Γ # A ⊃ B,∆
⊃R

Γ # A,∆

Γ,¬A # ∆
¬L

Γ,B # ∆

Γ,¬A ∨ B # ∆
∨L gives us

Γ # A,∆ Γ,B # ∆

Γ,A ⊃ B # ∆
⊃L

These rules very much resemble the ⊃R and ⊃L rules from intuitionistic logic, though
interestingly, the left rule does not require us to propagate the hypothesis A ⊃ B into the
left premise. �
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4 Proof Search in Prolog (20 points)

Refer to the classical sequent calculus of Problem 3.

Task 1 (20 pts). Complete the following Prolog code implementing a proof search
strategy for our classical sequent calculus. You may use the predicate intersect from
Problem 1.

Solution. We use the variable G to represent the context Γ, the variable D to represent the
context ∆, and Ps and Qs to hold true and false hypotheses until we’re ready to try the
“init” rule. The code follows. �

decide(Ps, Qs, G, [˜ A | D]) :-

decide(Ps, Qs, [A | G], D).

decide(Ps, Qs, [˜ A | G], D) :-

decide(Ps, Qs, G, [A | D]).

decide(Ps, Qs, G, [A \/ B | D]) :-

decide(Ps, Qs, G, [A, B | D])
____________________________________________________________ .

decide(Ps, Qs, [A \/ B | G], D) :-

decide(Ps, Qs, [A | G], D)
____________________________________________________________ ,

decide(Ps, Qs, [B | G], D)
____________________________________________________________ .

decide(Ps, Qs, G, [? P | D]) :-

decide(Ps, [? P | Qs], G, D)
____________________________________________________________ .

decide(Ps, Qs, [? P | G], D) :-

decide([? P | Ps], Qs, G, D)
____________________________________________________________ .

decide(Ps, Qs, [], []) :-

intersect(Ps, Qs)
____________________________________________________________ .
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5 Representing Proofs in LF (15 points)

Recall that the logical framework LF offers a clean and elegant representation of sequent
calculi with weakening and contraction in which sequent calculus hypotheses are repre-
sented as LF hypotheses. If we are interested in proving things about the calculus from
Problem 3 rather than using it for proof search, such a representation is very convenient.

Task 1 (15 pts). Imagine we permit implicit contraction in our classical sequent calculus.
Recall that we interpret a sequent Γ # ∆ in the following way: if all the propositions
in Γ are true and all the propositions in ∆ are false, then they are in contradiction. We
exploit this view in LF by representing every A in Γ as a hypothesis true A, and every
B in ∆ as a hypothesis false B.

Since every provable sequent represents a contradiction, the conclusion in LF is
always a new judgment contra.

Complete the following LF representation of the new calculus using the ideas above.

contra : type.

true : prop -> type.

false : prop -> type.

init : true (? P) -> false (? P) -> contra
____________________________________________________________ .

˜R : (true A -> contra)

-> (false (˜ A) -> contra).

˜L : (false A -> contra)

-> (true (˜ A) -> contra).

\/R : (false A -> false B -> contra)
____________________________________________________________

-> (false (A \/ B) -> contra)
____________________________________________________________ .

\/L : (true A -> contra)

-> (true B -> contra)

-> (true (A \/ B) -> contra).
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